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Modern Topics in Learning Theory

• Semi-Supervised Learning

• Active Learning

• Kernels and Similarity Functions

• Tighter Data Dependent Bounds
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Outline
• Kernels & Large Margin Classifiers

• Kernels as Features [BBV04]

• General Similarity Functions [BB06]

Hot topic in recent years

Hot topic in the near future
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Standard Supervised Learning

• X - instance space
• S={(xi, li)} - set of labeled examples

� x1, x2, … - drawn i.i.d. from some distr. D over X and 
labeled by target concept c

� li
� {-1,1}  - binary classification

• Do some optimization over S to find h with small 
error over D.
� err(h)=Px � D[h(x) ≠ c(x)]  � the error of h w.r.t. to c (and D)
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Linear Separators
• Well studied and understood.

• Instance space: X=Rn

• Hypothesis class - class of linear decision 
surfaces in Rn

� h(x)=w � x +b, if h(x) � 0, then label x as positive (+1), 
otherwise label it as negative (-1)
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Nonlinear Classification
• IDEA:  Map each point to a higher dimensional 

feature space and construct linear separator in 
that higher dimensional space.
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Nonlinear Classification
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Kernels - Main Idea
• K( �, �) - kernel if it can be viewed as a legal definition 

of inner product:
� � φ: X � RN such that K(x,y) =φ(x) � φ(y)

• range of φ - “φ-space”
• N can be very large

� But think of φ as implicit, not explicit!

• Examples
� Polynomial Kernel: X=Rn, K(x,y) =(1+x � y)d

• n=3, d=2, φ: R3 � R10
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Kernels
• Examples:

� Linear: K(x,y)=x � y
� Polynomial: K(x,y) =(1+x � y)d

� Gaussian:

� K(x,y)=K1(x,y)+c
� K(x,y)=c � K1(x,y)
� K(x,y)=K1(x,y)+K2(x,y)
� K(x,y)=K1(x,y)� K2(x,y)

• Closure Properties

• Easily create new kernels using basic ones!
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Kernels

K is a kernel iff
• K is symmetric
• for any set of training points x1, x2, …,xm and for 

any a1, a2, …, am
� R we have:
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Kernels - Main Idea

• If  all computations involving instances are in 
terms of inner products then:
� Conceptually, work in a very high diml space and the 

alg’s performance depends only on linear separability 
in that extended space.

� Computationally, only need to modify the alg. by 
replacing each x � y with a K(x,y).

• Examples: Perceptron, Voted Perceptron, SVM.

Kernelizing algorithm
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Lin. Separators: Perceptron algorithm
• Algorithm:

� Start with all-zeroes weight vector w.
� Given  example x, predict positive � w � x � 0.
� On a mistake, update as follows: 

• Mistake on positive, then update w 	 w + x
• Mistake on negative, then update w 	 w - x 

• Easy to kernelize 
 w is a weighted sum of 
examples:

• So, replace                                                     with
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Do we have good generalization?

• Standard SC - the amount of data we need 
depends on VC-dim of the hypothesis class.
� VC-dim for the class of linear sep. in Rm is m+1.

• Then, do we pay a lot from sample size point of 
view for going up?
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Large Margin Classifiers

• If S is a set of labeled examples, then a vector 
w has margin γ w.r.t. S if

w

θ

θα x

h: w �x = 0
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Large Margin Classifiers, cont

• If S is a set of labeled examples, then a vector 
w has margin γ w.r.t. S if 

• A vector w has margin γ with respect to P (the 
combined distribution over labeled examples) if 

• If large margin, then the amount of data we 
need depends only on γ and it’s independent on 
the dimension of the (instance) space!
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Large Margin Classifiers- Sample Complexity

• If large margin, then the amount of data we need depends 
only on 1/γ and is independent on the dim of the space!
� If large margin γ and if our alg. produces a large margin 

classifier, then the amount of data we need depends only 
on 1/γ [Bartlett & Shawe-Taylor ’99].

� If large margin, then Perceptron also behaves well:

• Claim: If the data is consistent with a linear threshold 
function specified by w

�

, then the number of mistakes is at 
most (1/ γ)2, where γ is the margin of w

�

� Another nice justification based on  Random Projection 
[Arriaga & Vempala ’99].
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Kernels & Large Margins
• If S is a set of labeled examples, then a vector w in 

the φ-space has margin γ if:

• A vector w in the φ-space has margin γ with respect 
to P if:

• A vector w in the φ-space has error α at margin γ if:

(α,γ)-good kernel
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Kernels & Large Margins, Summary

• Powerful combination in ML in recent years!

� A kernel implicitly allows mapping data into a high 
dimensional space and performing certain operations 
there without paying a high price computationally. 

� If data indeed has a large margin linear separator in 
that space, then one can avoid paying a high price in 
terms of sample size as well.
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Outline
• Kernels & Large Margin Classifiers

• Kernels as Features [BBV04]

• General Similarity Functions [BB06]

Hot topic in recent years

Hot topic in the near future
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Kernels as Features [BBV04]

• Main Idea:

� Designing a kernel function is much like 
designing a feature space.

� Given a good kernel K, we can reinterpret K as 
defining a new set of                features.
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Kernels as Features [BBV04]

• If indeed large margin under K, then a random
linear projection of the φ-space down to a low
dimensional space approximately preserves 
linear separability. 

• by Johnson-Lindenstrauss lemma!
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Main Idea - Johnson-Lindenstrauss lemma
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Main Idea - Johnson-Lindenstrauss lemma, 
cont

• For any vectors u,v with prob. (1-δ), 
�

(u,v) is 
preserved up to � γ/2, if we use 

• Usual use in algorithms: m points, set δ=O(1/m2)

• In our case, if we want w.h.p. � separator of 
error ε, use
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Main Idea, cont

• If c has margin γ in the φ-space, then F�(D,c), will w.h.p. 
have a linear separator of error at most ε.
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Problem Statement
• For a given kernel K, the dimensionality and 

description of φ(x) might be large, or even 
unknown.� Do not want to explicitly compute φ(x).

• Given kernel K - produce such a mapping F 
efficiently:� running time that depends polynomially only on 1/γ

and the time to compute K.� no dependence on the dimension of the “φ-space”.
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Main Result [BBV04]

• Positive answer - if our procedure for computing 
the mapping F is also given black-box access to 
the distribution D (unlabeled data).   

• Given black-box access to K( �, �), given access to 
D and γ, ε, δ, construct, in poly time,  F:X � Rd, 
where                         , s. t. if c has margin γ in 
the φ-space, then with prob. 1-δ, the induced 
distribution in Rd is separable with error � ε.

Formally.....
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3 methods (from simplest to best)

1. Draw d examples x1, …, xd from D.  Use:
F0(x) = (K(x,x1), ..., K(x,xd)). 

For d = (8/ε)[1/γ2 + ln 1/δ], if P was separable with margin γ
in φ-space, then w.h.p. this will be separable with error ε. 
(but this method doesn’t preserve margin).

2. Same d, but a little more complicated.  Separable with error 
ε at margin γ/2.

3. Combine (2) with further projection as in JL lemma.  Get d 
with log dependence on 1/ε, rather than linear.  So, can set 
ε � 1/d.
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A Key Fact
Claim: If � unit-length w of margin γ in φ-space, then if 

draw x1, …, xd � D for d � (8/ε)[1/γ2 + ln 1/δ], w.h.p. 
(1-δ) exists w’ in span(Φ(x1),...,Φ(xd)) of error � ε at 
margin γ/2.

Proof: Let S = {Φ(x)} for examples x drawn so far.	 
 �� 
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A First Attempt

• If draw x1,...,xd J D for d = (8/ε)[1/γ2 + ln 1/δ], then whp
exists w’ in span(φ(x1),...,φ(xd)) of error K ε at margin γ/2.

• So, for some w’ = α1φ(x1) + ... + αdφ(xd),
Pr(x,L) M P [sign(w’ / φ(x)) ≠ N] K ε.

• But notice that w’ /φ(x) = α1K(x, x1) + ... + αdK(x, xd).O vector (α1,...αd) is a separator in the feature space 

(K(x,x1), …, K(x,xd)) with error ≤ ε.

• But margin not preserved because of length of target, 
examples.
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A First Mapping
• Draw a set S={x1, ..., xd} of                        

unlabeled examples from D. 
• Run K(x,y) for all x,yPS, get M(S)=(K(xi,xj))xi,xjQ S.

• Place S into d-dim. space based on K (or M(S)).  

X

x1
x3

x2

K(x1,x1)=|F1(x1)|
2

F1(x1)

F1(x2)

K(x2,x2)

K(x1,x2)

K(x3,x3)

F1(x3)

Rd

F1
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A First Mapping, cont

• What to do with new points?

• Extend the embedding F1 to all of X:
� consider F1: X � Rd defined as follows: for x J X, let 

F1(x) J Rd be the point such that F1(x) /F1(xi) = K(x,xi), 
for all i J {1, ..., d}. 

• The mapping is equivalent to orthogonally 
projecting φ(x) down to span(φ(x1),�, φ(xd)).
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An improved mapping

• A two-stage process, compose the first
mapping, F1, with a random linear projection.

• Combine two types of random projection: 
� a projection based on points chosen at random 

from D.
� a projection based on choosing points uniformly at 

random in the intermediate space.
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Improved Mapping  - Properties

• Given ε, δ, γ <1,                                , if P has 

margin γ in the φ-space, then with probability 
�

1-δ, our mapping into Rd, has the property 

that F(D,c) is linearly separable with error at 

most ε, at margin at most        , given that we 

use                                   unlabeled examples.
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Improved Mapping, Consequences
• If P has margin γ in the φ-space then we can use  

unlabeled examples to produce a 
mapping into Rd for                              , such that 
w.h.p. data is linearly separable with error �ε'/d.

• The error rate of the induced target function in Rd

is so small that a set S of              labeled 
examples will, w.h.p., be perfectly separable in 
Rd.
� Can use any generic, zero-noise linear separator 

algorithm in Rd.

Maria-Florina Balcan

Implications, Open Problems

• Designing a kernel function -- designing a 
feature space.

• Alternative to ”kernelizing” a learning algorithm: 
� rather than modifying the alg. to use kernels, 

construct instead a mapping into a low-diml space 
using the kernel and D; then run any un-kernelized 
alg over examples drawn from the mapped 
distribution.

• Open problem: Produce the desired mappings 
F:X � Rd in an oblivious manner (without 
access to D) for natural/standard kernels.
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Outline
• Kernels & Large Margin Classifiers

• Kernels as Features [BBV04]

• General Similarity Functions [BB06]

Hot topic in recent years

Hot topic in the near future
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Goal: definition of “good similarity function” for a 
learning problem that:

1. Talks in terms of more natural direct properties:
• no implicit high-diml spaces
• no requirement of positive-semidefiniteness

2. If K satisfies these properties for our given 
problem, then has implications to learning : 

• can’t just say any function is a good one �
3. Is broad: includes usual notion of “good kernel”

(one that induces a large margin separator in φ-
space).

General Similarity Functions
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A first Attempt: Definition satisfying 
properties (1) and (2)

• K:(x,y)� [-1,1] is an (ε,γ)-good similarity for P if 
at least a 1-ε prob mass of  x satisfy:

Ey~P[K(x,y)|�(y)=�(x)] � Ey~P[K(x,y)|�(y)≠�(x)]+γ

How can we use it?
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How to use it
At least a 1-ε prob mass of x satisfy:

Ey~P[K(x,y)|�(y)=�(x)] 
�

Ey~P[K(x,y)|�(y)≠�(x)]+γ

� Draw S+ of O(γ-2 ln(1/δ2)) positive examples.
� Draw S- of O(γ-2 ln(1/δ2)) negative examples.
� Classify x based on which gives better score.
� Hoeffding: for any given “good x”, prob of error 

over draw of S+,S− at most δ2.
� So, at most δ chance our draw is bad on more 

than δ fraction of “good x”.  So overall error rate � ε + δ.
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But not broad enough

• K(x,y)=x �y has good (large margin) separator 
but doesn’t satisfy the previous definition:� half of positives are more similar to negatives that to typical 

positives
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But not broad enough

• Idea: would work if we didn’t pick y’s from top-left.  
• Broaden to say: OK if � large region R s.t. most x are 

on average more similar to yPR of same label than to 
yPR of other label.

	 	






8

Maria-Florina Balcan

Broader Definition
• K:(x,y)� [-1,1] is an (ε,γ)-good similarity for P if 

exists a weighting function w(y)�[0,1] s.t. at 
least 1-ε mass of x satisfy:

• How to use it:
� Draw S+ = {y1,…,yn}, S- = {z1,…,zn}. n=Õ(1/γ2)
� Use to “triangulate” data:

F(x) = [K(x,y1), …,K(x,yn), K(x,z1),…,K(x,zn)].� Whp, exists good separator in this feature space 
w = [w(y1),…,w(yn),-w(z1),…,-w(zn)]

Ey~P[w(y)K(x,y)|�(y)=�(x)] 
�

Ey~P[w(y)K(x,y)|�(y)≠�(x)]+γ
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And furthermore

� An (ε,γ)-good kernel [margin 
� γ on at least 1-ε

fraction of P] is an (ε’,γ’)-good sim fn under this 
definition.

• ε’ = ε + εextra, γ’ = γ3εextra.

Good Kernels are Good Similarity Functions
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And furthermore

� An (ε,γ)-good kernel is an (ε’,γ’)-good similarity 
function under this definition.

• ε= ε + εextra, γ’ = γ3εextra.

Proof (very rough sketch):
� Set w(y)=0 for the ε fraction of “bad” y’s.
� Imagine repeatedly running margin-Perceptron on 

multiple samples S from remainder.
� Set w(y) � �(y) �E[weight(y) | y � S]

Good Kernels are Good Similarity Functions
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Implications

• Provide the first rigorous explanation showing 
why a kernel is a good similarity function.

• Our algorithms do not require positive 
semidefinite functions!


