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Modern Topics in Learning Theory

« Semi-Supervised Learning
 Active Learning
e Kernels and Similarity Functions

¢ Tighter Data Dependent Bounds
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Outline

» Kernels & Large Margin Classifiers

‘ Hot topic in recent years ‘

» Kernels as Features [BBV04]

» General Similarity Functions [BB06]

‘ Hot topic in the near future ‘
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Standard Supervised Learning

X - instance space

S={(x;, I} - set of labeled examples

= Xy, Xy ... - drawn i.i.d. from some distr. D over X and
labeled by target concept c

= | €{-1,1} - binary classification

Do some optimization over S to find h with small
error over D.
= err(h)=P, . p[h(x) # c(x)] — the error of h w.r.t. to ¢ (and D)
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Linear Separators

» Well studied and understood. x « o 4

X )
X 7x

X
* Instance space: X=R" o
» Hypothesis class - class of linear decision
surfaces in R"

= h(x)=w - x +b, if h(x) > 0, then label x as positive (+1),
otherwise label it as negative (-1)
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Nonlinear Classification

» IDEA: Map each point to a higher dimensional
feature space and construct linear separator in
that higher dimensional space.

(z1,22) = (21,22,23) '= (z%z%,ﬁzm)
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Nonlinear Classification
¢ R2 RS (z1,22) — (21,22,23) 1= (:r,%,:r,%, \/5:1:1.’1:2)

¢ (z)¢ (') = (z% a:%, \/51172) (z'f., z’22, ﬁz&zé)T

Kernels - Main Idea

* K(-,-) - kernel if it can be viewed as a legal definition
of inner product:

= J @ X — RN such that K(x,y) =@(x) - @(y)

= (z-2)? = K (2,7 “ ”
« range of @- “@-space
X % . ii « N can be very large
« X = But think of @ as implicit, not explicit!
e X
x 7 0N
X o o\ ' x * Examples
% 06,/ x = Polynomial Kernel: X=R", K(x,y) =(1+x - y)4
x e X ) + n=3,d=2, ¢ R3 5 R"
X . « #(z) = (1,2%,23,23, v221,v202, V213, V22122, V21123, V22013)
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Kernels Kernels
* Examples:

= Linear: K(X,y)=x - y
= Polynomial: K(x,y) =(1+x - y)d
= Gaussian: K(z,y) = exp [*%iﬁ}
» Closure Properties
= K(x,y)=K;(x.y)+c
= K(x,y)=c - K;(x.y)
= K(X,y)=K;(x,y)+K5(x,y)
= Kxy)=K;(xy): Ky(x.y)

 Easily create new kernels using basic ones!
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Kis a kernel iff

* Kis symmetric

« for any set of training points Xy, X,, ...,X;, and for
any a,, a,, ..., a, € R we have:

Y aaiK(xj,x5) >0
i,j
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Kernels - Main Idea

Kernelizing algorithm ‘

« If all computations involving instances are in
terms of inner products then:

= Conceptually, work in a very high diml space and the
alg’s performance depends only on linear separability
in that extended space.

= Computationally, only need to modify the alg. by
replacing each x - y with a K(x,y).

« Examples: Perceptron, Voted Perceptron, SVM.
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Lin. Separators: Perceptron algorithm

» Algorithm:
= Start with all-zeroes weight vector w.
= Given example x, predict positive < w - x > 0.
= On a mistake, update as follows:
« Mistake on positive, then update w < w + x
« Mistake on negative, then update w « w - x

« Easy to kernelize — w is a weighted sum of
examples: w = aj;x;; + -+ + a5z,

* So, replace w -z = a;;xj; - + -+ + ajx;, - ¢ With
ai, K (@i, @) + -+ + a5, K (2, )
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Do we have good generalization?

» Standard SC - the amount of data we need
depends on VC-dim of the hypothesis class.
= VC-dim for the class of linear sep. in R™ is m+1.

» Then, do we pay a lot from sample size point of
view for going up?
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Large Margin Classifiers

« If Sis a set of labeled examples, then a vector

w has marginyw.rt. Sif min [ %] >,
(z,0)es | |w||z|| —

. p=d(w,/z)=%‘r’

cos / (w,z) = cos (0) = sin ()
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Large Margin Classifiers, cont

» If Sis a set of labeled examples, then a vector
w has marginyw.rt. Sif ., [ﬂ'z >y

(@0es | |w|lz]| =

« A vector w has margin y with respect to P (the
combined distribution over labeled examples) if

i < 7] =0.

w-
—
[w]lz|

Pr
(z,0)eP

« If large margin, then the amount of data we
need depends onlf\]/ on y and it's independent on
the dimension of the (instance) space!
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Large Margin Classifiers- Sample Complexity

« If large margin, then the amount of data we need depends
only on 1/y and is independent on the dim of the space!

= |f large margin y and if our alg. produces a large margin
classifier, then the amount of data we need depends only
on 1/y [Bartlett & Shawe-Taylor 99].

= [f large margin, then Perceptron also behaves well:

« Claim: If the data is consistent with a linear threshold
function specified by w*, then the number of mistakes is at
most (1/ y)?, where y is the margin of w*

= Another nice justification based on Random Projection
[Arriaga & Vempala '99].
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Kernels & Large Margins

« If Sis a set of labeled examples, then a vector w in
the @-space has margin yif:

) PR #(x)

J%Qs[ el 6]

el

« A vector w in the @-space has margin y with respect
to P if: @) ]
[wllp(a)]

(z,0)eP

« A vector w in the @-space has error a at margin y if:
CC))
[wlé(2)]

ehep < 7} <a |(a,y)-good kernel
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Kernels & Large Margins, Summary

» Powerful combination in ML in recent years!

= A kernel implicitly allows mapping data into a high
dimensional space and performing certain operations
there without paying a high price computationally.

= |f data indeed has a large margin linear separator in
that space, then one can avoid paying a high price in
terms of sample size as well.
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Outline

» Kernels & Large Margin Classifiers

‘ Hot topic in recent years ‘

» Kernels as Features [BBV04]

» General Similarity Functions [BB06]

‘ Hot topic in the near future ‘
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Kernels as Features [BBV04]

* Main Idea:

= Designing a kernel function is much like
designing a feature space.

= Given a good kernel K, we can reinterpret K as
defining a new set of O(1/~2) features.
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Kernels as Features [BBV04]

Main ldea - Johnson-Lindenstrauss lemma

X o
« If indeed large margin under K, then a random x X "
linear projection of the @-space down to a low . x /X °O
dimensional space approximately preserves
linear separability. A
« by Johnson-Lindenstrauss lemmal X " d=0 (712 log %)
o5 0 |
° R X /wO w' = ﬁAw
« x X /é;o o )
=1 Ap
= \/QAVL
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Main ldea - sohnson-Lindenstrauss lemma, Main Idea, cont
cont
 For any vectors u,v with prob. (1-3), £(u,v) is
preserved up to + y/2, if we use d = O (712 log %)
« Usual use in algorithms: m points, set 6=0(1/m?) X A
X _ 1 1
A N d-O(;gloga;)

* In our case, if we want w.h.p. 3 separator of
— 1 1
error g, use d = O (77 log 5)
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o
\F\/\ x X o 1
X XX/OO 7 @) = gAda)

 If c has margin yin the @-space, then F*(D,c), will w.h.p.
have a linear separator of error at most €.
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Problem Statement

» For a given kernel K, the dimensionality and
description of @(x) might be large, or even
unknown.

= Do not want to explicitly compute @(x).

» Given kernel K - produce such a mapping F
efficiently:
= running time that depends polynomially only on 1/y
and the time to compute K.
= no dependence on the dimension of the “@-space”.
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Main Result [BBV04]

« Positive answer - if our procedure for computing
the mapping F is also given black-box access to
the distribution D (unlabeled data).

Formally.....

» Given black-box access to K(-,-), given access to
D and Yy, &, 9, construct, in poly time, F:X — Rd,
where d =0 7% log k) s. t. if c has margin yin
the @-space, then with prob. 1-9, the induced
distribution in R4 is separable with error < .
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3 methods (from simplest to best)

1. Draw d examples Xy, ..., Xy from D. Use:
Fo(x) = (K(X.Xy), .., K(X.Xy))-
For d = (8/e)[1/y2 + In 1/3], if P was separable with margin y
in @-space, then w.h.p. this will be separable with error €.
(but this method doesn’t preserve margin).

2. Same d, but a little more complicated. Separable with error
€ at margin y/2.

3. Combine (2) with further projection as in JL lemma. Getd
with log dependence on 1/g, rather than linear. So, can set
£k 1/d.
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A Key Fact

Claim: If 3 unit-length w of margin y in ¢-space, then if
draw Xy, ..., Xy € D for d > (8/€)[1/? + In 1/3], w.h.p.
(1-9) exists W' in span(®(x,),...,P(xy)) of error < € at
margin y/2.

Proof: Let S = {d(x)} for examples x drawn so far.

* wln = proj(wlqun(s))' WOI.I"' =w- wiﬂ'

+ Say w,,, is large if Pr,(|w,+o(x)| > y/2) > € else small.

* If small, then done: w' = w;,,.

* Else, next x has at least € prob of improving S.
W2 = 12 - (/2 &2/

+ Can happen at most 4/y? times. o
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A First Attempt

* If draw xg,...,x4 € D for d = (8/¢)[1/y? + In 1/8], then whp
exists w' in span(@(x,),...,@(xy)) of error < € at margin y/2.

* So, for some W' = a,@(x,) + ... + ag@(Xy),
Pr(x.l) epP [Sign(W’ : (KX)) # l] S E.

» But notice that w-@(x) = o, K(X, X;) + ... + 0gK(X, Xg)-
= vector (a,,...0y) is a separator in the feature space
(K(X,Xy), ..., K(X,X4)) with error < €.

« But margin not preserved because of length of target,
examples.
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A First Mapping

« Draw a set S={x,, ..., X} of d = O <% [71; +1In %D
unlabeled examples from D.

* Run K(x,y) for all x,yeS, get M(S)=(K(xi,xj))xi,Xje s,

» Place S into d-dim. space based on K (or M(S)).

X — KOux)=IF1 001
Kpaa) /
- Fa(x)

— Klux)

ARG

K %)
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A First Mapping, cont

* What to do with new points?

+ Extend the embedding F; to all of X:

= consider F;: X — R defined as follows: for x € X, let
F.(X) € RY be the point such that F;(x) -F;(x) = K(X,%),
forallie {1, ..., d}.

» The mapping is equivalent to orthogonally
projecting @(x) down to span(@Xx,),---, @Xy))-
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An improved mapping

» A two-stage process, compose the first
mapping, F,, with a random linear projection.

» Combine two types of random projection:

= a projection based on points chosen at random
from D.

= a projection based on choosing points uniformly at
random in the intermediate space.
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N * ©
R X Xx / % (N>>n)
) X o

\\ b log m)
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Improved Mapping - Properties

. Givene, 8, y<l, d=O (%2 Iog(%)), if P has
margin y in the @-space, then with probability
>1-9, our mapping into RY, has the property
that F(D,c) is linearly separable with error at
most €, at margin at most /4, given that we
use n=0 (% {712 +1n %D unlabeled examples.
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Improved Mapping, Consequences

* If P has margin y in the ¢-space then we can use
n = O(1/4*) unlabeled examples to produce a
mapping into RY for d = 0(72 log é) such that
w.h.p. data is linearly separable WI'[h error «¢g'/d.

» The error rate of the induced target function in R4
is so small that a set S of O(d/¢') labeled
examples will, w.h.p., be perfectly separable in
Rd,

= Can use any generic, zero-noise linear separator
algorithm in Rd.
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Implications, Open Problems

» Designing a kernel function -- designing a

feature space.

* Alternative to "kernelizing” a learning algorithm:

= rather than modifying the alg. to use kernels,
construct instead a mapping into a low-diml space
using the kernel and D; then run any un-kernelized
alg over examples drawn from the mapped
distribution.

» Open problem: Produce the desired mappings

F:X — RY in an oblivious manner (without
access to D) for natural/standard kernels.
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General Similarity Functions

Goal: definition of “good similarity function” for a
learning problem that:

1. Talks in terms of more natural direct properties:
* no implicit high-diml spaces
¢ no requirement of positive-semidefiniteness
2. If K satisfies these properties for our given
problem, then has implications to learning :
e can'tjust say any function is a good one ©
3. Is broad: includes usual notion of “good kernel”
(one that induces a large margin separator in ¢-
space).
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A first Attempt: Definition satisfying
properties (1) and (2)

* K:(x,y)—[-1,1] is an (g,y)-good similarity for P if
at least a 1-€ prob mass of x satisfy:

E,-p[KX.Y)IE(Y)=6X)] > E, p[K(x,y)IE(y)ZEX)]+Y

How can we use it?
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How to use it

At least a 1-¢ prob mass of x satisfy:
E,-p[KXY)[E(Y)=6(X)] > E,_p[K(x,y)[E(y)ZEX)]+Y

= Draw S* of O(y2In(1/&?)) positive examples.
= Draw S- of O(y2In(1/3?)) negative examples.
= Classify x based on which gives better score.

= Hoeffding: for any given “good x”, prob of error
over draw of S*,S- at most 2.

= S0, at most & chance our draw is bad on more
than & fraction of “good x". So overall error rate
<e+d
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But not broad enough

* K(x,y)=x-y has good (large margin) separator
but doesn't satisfy the previous definition:

= half of positives are more similar to negatives that to typical
positives
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But not broad enough

 ldea: would work if we didn’t pick y’'s from top-left.

* Broaden to say: OK if 3 large region R s.t. most x are
on average more similar to yeR of same label than to
yER of other label.
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Broader Definition

* K:(x,y)—[-1,1] is an (g,y)-good similarity for P if
exists a weighting function w(y)€[0,1] s.t. at
least 1-€ mass of x satisfy:

Ey-pW)K(X.Y)IEY)=E(X)] = E,_p[W(y)K(XY)IEY)ZEX)]+Y

e How to use it:
= Draw S* ={y,,....y,}, S ={z;,....z,}. n=0(1?)
= Use to “triangulate” data:
F() = [KOGYq),s KXY, K(X,2y), ..., K(%,2,)]-
= Whp, exists good separator in this feature space
W = [W(Yy), - W), -W(Zy), .- W(Z,)]
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And furthermore

‘Good Kernels are Good Similarity Functions

= An (g,y)-good kernel [margin > y on at least 1-€
fraction of P] is an (¢',y)-good sim fn under this
definition.

* 81 =g+ 86)([[&’ y = y3£extra'
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And furthermore

‘Good Kernels are Good Similarity Functions

= An (g,y)-good kernel is an (€’,y)-good similarity
function under this definition.

=g+ Sextrai y = y3£extra'

Proof (very rough sketch):
= Set w(y)=0 for the ¢ fraction of “bad” y's.
* Imagine repeatedly running margin-Perceptron on
multiple samples S from remainder.
= Set w(y) x ¢(y)-E[weight(y) | y € S]
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Implications

 Provide the first rigorous explanation showing
why a kernel is a good similarity function.

 Our algorithms do not require positive
semidefinite functions!
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