Modern Topics in Learning Theory

Maria-Florina Balo

Maria-Florina Balcan 04/26/2006

Modern Topics in Learning Theory

Maria-Florina Balca

- Semi-Supervised Learning
- Active Learning
- Kernels and Similarity Functions
- Tighter Data Dependent Bounds

Kernels - Main Idea

Kernelizing algorithm

- If all computations involving instances are in terms of inner products then:
 - Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.

Maria-Florina Balcar

- Computationally, only need to modify the alg. by replacing each $x \cdot y$ with a K(x,y).
- Examples: Perceptron, Voted Perceptron, SVM.

Lin. Separators: Perceptron algorithm

• Algorithm:

- Start with all-zeroes weight vector w.
- Given example x, predict positive $\Leftrightarrow w \cdot x \ge 0$.
- On a mistake, update as follows:
 - Mistake on positive, then update w \leftarrow w + x
 - Mistake on negative, then update w \leftarrow w x
- Easy to kernelize \rightarrow w is a weighted sum of examples: $w = a_{i_1}x_{i_1} + \cdots + a_{i_k}x_{i_k}$
- So, replace $w \cdot x = a_{i_1}x_{i_1} \cdot x + \dots + a_{i_k}x_{i_k} \cdot x$ with $a_{i_1}K(x_{i_1}, x) + \dots + a_{i_k}K(x_{i_k}, x)$

Maria-Florina Balcan

- Standard SC the amount of data we need depends on VC-dim of the hypothesis class.
 VC-dim for the class of linear sep. in R^m is m+1.
- Then, do we pay **a lot** from sample size point of view for going up?

Maria-Florina Balo

Maria-Florina Balca

 If large margin, then the amount of data we need depends only on γ and it's independent on the dimension of the (instance) space!

- If large margin, then the amount of data we need depends only on 1/γ and is independent on the dim of the space!
 - If large margin γ and if our alg. produces a large margin classifier, then the amount of data we need depends only on 1/γ [Bartlett & Shawe-Taylor '99].
 - If large margin, then Perceptron also behaves well:
 - **Claim**: If the data is consistent with a linear threshold function specified by w*, then the number of mistakes is at most $(1/\gamma)^2$, where γ is the margin of w*
 - Another nice justification based on Random Projection [Arriaga & Vempala '99].

Maria-Florina Balcar

Kernels as Features [BBV04]

• Main Idea:

- Designing a kernel function is much like designing a feature space.
- Given a good kernel K, we can reinterpret K as defining a new set of Õ(1/γ²) features.

Maria-Florina Balo

Kernels as Features [BBV04]

 If indeed large margin under K, then a random linear projection of the φ-space down to a low dimensional space approximately preserves linear separability.

• by Johnson-Lindenstrauss lemma!

Main Idea - Johnson-Lindenstrauss lemma, cont

Maria-Florina Balca

Maria-Florina Balcar

- For any vectors u,v with prob. (1-δ), ∠(u,v) is preserved up to ± γ/2, if we use d = O (¹/_{√2} log ¹/_δ)
- Usual use in algorithms: m points, set $\delta = O(1/m^2)$
- In our case, if we want w.h.p. \exists separator of error ε , use $d = O\left(\frac{1}{\gamma^2} \log \frac{1}{\epsilon \delta}\right)$

Problem Statement

- For a given kernel K, the dimensionality and description of φ(x) might be large, or even unknown.
 - Do not want to explicitly compute $\phi(x)$.
- Given kernel K produce such a mapping F efficiently:
 - running time that depends polynomially only on $1/\gamma$ and the time to compute K.

Maria-Florina Balca

Maria-Florina Balcar

Maria-Florina Balcar

Main Result [BBV04]

 Positive answer - if our procedure for computing the mapping F is also given black-box access to the distribution D (unlabeled data).

Formally

• Given black-box access to $K(\cdot, \cdot)$, given access to D and γ , ε , δ , construct, in poly time, F:X $\rightarrow R^d$, where $d = O\left(\frac{1}{\gamma^2}\log \frac{1}{\epsilon\delta}\right)$ s. t. if c has margin γ in the ϕ -space, then with prob. 1- δ , the induced distribution in R^d is separable with error $\leq \varepsilon$.

Maria-Florina Balcan

Maria-Florina Balcar

3 methods (from simplest to best)

- 1. Draw d examples $x_1, ..., x_d$ from D. Use: $F_0(x) = (K(x,x_1), ..., K(x,x_d)).$ For $d = (8/\epsilon)[1/\gamma^2 + \ln 1/\delta]$, if P was separable with margin γ in ϕ -space, then w.h.p. this will be separable with error ϵ . (but this method doesn't preserve margin).
- 2. Same d, but a little more complicated. Separable with error ϵ at margin $\gamma\!/2.$
- 3. Combine (2) with further projection as in JL lemma. Get d with log dependence on 1/ $\!\epsilon$, rather than linear. So, can set $\epsilon\ll$ 1/d.

A Key Fact

Claim: If \exists unit-length w of margin γ in ϕ -space, then if draw $x_1, \ldots, x_d \in D$ for $d \ge (8/\epsilon)[1/\gamma^2 + \ln 1/\delta]$, w.h.p. $(1-\delta)$ exists w' in span $(\Phi(x_1), \ldots, \Phi(x_d))$ of error $\le \epsilon$ at margin $\gamma/2$.

Proof: Let $S = {\Phi(x)}$ for examples x drawn so far.

- * w_{in} = proj(w,span(S)), w_{out} = w w_{in}.
- Say w_{out} is large if $\Pr_{x}(|w_{out} \cdot \Phi(x)| \ge \gamma/2) \ge \varepsilon$; else small.
- If small, then done: w' = w_{in}.
- + Else, next x has at least ϵ prob of improving S. $|w_{out}|^2 \leftarrow |w_{out}|^2 (\gamma/2)^2$

• Can happen at most $4/\gamma^2$ times.

A First Attempt

- If draw $x_1,...,x_d \in D$ for $d = (8/\epsilon)[1/\gamma^2 + \ln 1/\delta]$, then whp exists w' in span($\phi(x_1),...,\phi(x_d)$) of error $\leq \epsilon$ at margin $\gamma/2$.
- So, for some w' = $\alpha_1 \phi(x_1) + ... + \alpha_d \phi(x_d)$, $Pr_{(x,l) \in P} [sign(w' \cdot \phi(x)) \neq l] \leq \epsilon.$
- But notice that $w' \cdot \phi(x) = \alpha_1 K(x, x_1) + ... + \alpha_d K(x, x_d).$ \Rightarrow vector $(\alpha_1, ..., \alpha_d)$ is a separator in the feature space $(K(x, x_1), ..., K(x, x_d))$ with error $\leq \epsilon$.
- But margin not preserved because of length of target, examples.

Improved Mapping - Properties

Given ε, δ, γ <1, d = O (¹/_{γ²} log(¹/_{εδ})), if P has margin γ in the φ-space, then with probability ≥1-δ, our mapping into R^d, has the property that F(D,c) is linearly separable with error at most ε, at margin at most γ/4, given that we use n = O (¹/_ε [¹/_{γ²} + ln ¹/_δ]) unlabeled examples.

Maria-Florina Balcan

Maria-Florina Balcar

Improved Mapping, Consequences

- If P has margin γ in the ϕ -space then we can use $n = \tilde{O}(1/\gamma^4)$ unlabeled examples to produce a mapping into R^d for $d = O(\frac{1}{\gamma^2} \log \frac{1}{\epsilon' \gamma \delta})$, such that w.h.p. data is linearly separable with error $\ll \epsilon'/d$.
- The error rate of the induced target function in R^d is so small that a set S of $\tilde{O}(d/\epsilon')$ labeled examples will, w.h.p., be **perfectly** separable in R^d.
 - Can use any generic, zero-noise linear separator algorithm in R^d.

Maria-Florina Balcar

Implications, Open Problems

- Designing a kernel function -- designing a feature space.
- Alternative to "kernelizing" a learning algorithm:
 rather than modifying the alg. to use kernels, construct instead a mapping into a low-diml space using the kernel and D; then run any un-kernelized alg over examples drawn from the mapped distribution.
- Open problem: Produce the desired mappings $F:X \rightarrow R^d$ in an oblivious manner (without access to D) for natural/standard kernels.

Maria-Florina Balo

Maria-Florina Balca

General Similarity Functions

Goal: definition of "good similarity function" for a learning problem that:

- 1. Talks in terms of more natural direct properties:
 - no implicit high-diml spaces
- no requirement of positive-semidefiniteness
- 2. If K satisfies these properties for our given problem, then has implications to learning :
 can't just say any function is a good one is
- Is broad: includes usual notion of "good kernel" (one that induces a large margin separator in φspace).

Maria-Florina Balcar

Maria-Florina Balcar

A first Attempt: Definition satisfying properties (1) and (2)

- K:(x,y)→[-1,1] is an (ε,γ)-good similarity for P if at least a 1-ε prob mass of x satisfy:
 - $\mathsf{E}_{y \sim \mathsf{P}}[\mathsf{K}(x,y)|\boldsymbol{\ell}(y) {=} \boldsymbol{\ell}(x)] \geq \mathsf{E}_{y \sim \mathsf{P}}[\mathsf{K}(x,y)|\boldsymbol{\ell}(y) {\neq} \boldsymbol{\ell}(x)] {+} \gamma$

How can we use it?

Broader Definition

K:(x,y)→[-1,1] is an (ε,γ)-good similarity for P if exists a weighting function w(y)∈[0,1] s.t. at least 1-ε mass of x satisfy:

 $\mathsf{E}_{y \sim \mathsf{P}}[w(y)\mathsf{K}(x,y)|\ell(y) = \ell(x)] \geq \mathsf{E}_{y \sim \mathsf{P}}[w(y)\mathsf{K}(x,y)|\ell(y) \neq \ell(x)] + \gamma$

- How to use it:
 - Draw S⁺ = {y₁,...,y_n}, S⁻ = {z₁,...,z_n}. n= $\tilde{O}(1/\gamma^2)$ • Use to "triangulate" data:
 - F(x) = [K(x,y₁), ...,K(x,y_n), K(x,z₁),...,K(x,z_n)].
 Whp, exists good separator in this feature space

Maria-Florina Balcar

Maria-Florina Balcar

 $w = [w(y_1), \dots, w(y_n), -w(z_1), \dots, -w(z_n)]$

And furthermore

Good Kernels are Good Similarity Functions

• An (ε, γ) -good kernel [margin $\geq \gamma$ on at least 1- ε fraction of P] is an (ε', γ') -good sim fn under this definition.

• $\varepsilon' = \varepsilon + \varepsilon_{\text{extra}}, \ \gamma' = \gamma^3 \varepsilon_{\text{extra}}.$

Maria-Florina Balcar

And furthermore

Good Kernels are Good Similarity Functions

- An (ε,γ)-good kernel is an (ε',γ')-good similarity function under this definition.
 - $\varepsilon = \varepsilon + \varepsilon_{\text{extra}}, \ \gamma' = \gamma^3 \varepsilon_{\text{extra}}.$

Proof (very rough sketch):

- Set w(y)=0 for the ε fraction of "bad" y's.
- Imagine repeatedly running margin-Perceptron on multiple samples S from remainder.
- Set w(y) $\propto \boldsymbol{\ell}(y)$ E[weight(y) | $y \in S$]

Implications

- Provide the first rigorous explanation showing why a kernel is a good similarity function.
- Our algorithms do not require positive semidefinite functions!

Maria-Florina Balcan