
Modern Topics in Learning
Theory

Maria-Florina Balcan

04/24/2006



Modern Topics in Learning Theory

Semi-Supervised Learning

Active Learning

Kernels and Similarity Functions

Tighter Data Dependent Bounds



Outline

• AdaBoost
– Algorithm
– AdaBoost Behavior in Experiments

• Generalization error as a function of Mar-
gin Distributions
– Classification Margin
– Finite base-classifier spaces

• The effect of Boosting on Margin Distri-
butions



AdaBoost recap

AdaBoost combines weak learners in a weighted
majority voting scheme

• given a training set (x1, y1), · · · , (xm, ym)

• yi ∈ {−1,1} correct label of instance xi ∈ X

• for t = 1, · · · , T
– construct a distribution Dt on {1,2, · · · , m}

– find a weak hypothesis (”rule of thumb”)
ht : X ← {−1,1} with small error εt on
Dt, εt = PrDt[ht(xi) 6= yi]

• output final hypothesis Hfinal

• constructing Dt:

– D1(i) = 1
m

– given Dt and ht

Dt+1(i) = Dt(i)
Zt
· e−αt if yi = ht(xi)

Dt+1(i) = Dt(i)
Zt
· eαt if yi 6= ht(xi) where

αt = 1
2 ln

[
1−εt

εt

]
• final hypothesis: Hfinal(x) = sign(

T∑
t=1

αtht(x))



AdaBoost Behavior in Experiments

Experiments with boosting showed that the
test error of the generated classifier usually
does not increase as its size becomes very large.

Experiments with boosting showed also that
continuing to add new weak learners after cor-
rect classification of the training set had been
achieved could further improve test set perfor-
mance!

These results seem to contradict Occam’s ra-
zor: in order achieve good test error the clas-
sifier should be as simple as possible!



Error Curve, Margin Distr. Graph -
Plots from [SFBL98]



Analyzing Generalization Error

Remember, usual sample complexity statements:

Theorem 1 If H is a finite hypotheses space,
then with probab. 1 − δ, ∀h ∈ H we have
|err(h)− êrr(h)| < ε given that we see

m ≥ O

(
1

ε2

[
ln |H|+ ln

1

δ

])
labeled examples.

Or, another way to state it: with probab. 1−δ,
∀h ∈ H

err(h) ≤ êrr(h) + O


√√√√ln |H|+ ln

(
1
δ

)
m


given that we see m labeled examples.

In general, with probab. 1− δ, ∀h ∈ H,

err(h) ≤ êrr(h) + O


√√√√ln(C[2m]) + ln

(
1
δ

)
m





How can we explain the
experiments?

R. Schapire, Y. Freund, P. Bartlett, W. S. Lee.
present in “Boosting the margin: A new expla-
nation for the effectiveness of voting methods”
a nice theoretical explanation.

Main Idea:

Training error does not tell the whole story.

Need to also consider the classification confi-
dence!



Classification Margin

Consider H to be the space of weak hypothe-
ses. Define the convex hull of H to be

co(H) =

f =
T∑

t=1

atht, at ≥ 0,
T∑

t=1

at = 1, ht ∈ H



Let f ∈ co(H), f =
T∑

t=1
atht, at ≥ 0,

T∑
t=1

at = 1.

The majority vote rule Hf associated with f

(given by Hf(x) = sign(f(x))) gives a wrong
prediction on the example (x, y) iff yf(x) ≤ 0.

Define the margin of Hf(or of f) on example
(x, y) to be yf(x).

Note that yf(x) = y
T∑

t=1
[atht(x)] =

T∑
t=1

[yatht(x)] =∑
t:y=ht(x)

at −
∑

t:y 6=ht(x)
at.

The margin is positive iff y = Hf(x).

See |yf(x)| = |f(x)| as the strength or the con-
fidence of the vote.



Gen. error as a function of Margin
Distributions

Assume that the examples are generated i.i.d.
according to some distr. D over X × {−1,1};
denote by PrD[·] the probability when (x, y) is
chosen from D.

If S is a training set (a sample of size m,
S = {(x1, y1), · · · (xm, ym)}), then we denote by
PrS[·] the probability when (x, y) is chosen uni-
formly at random form S.

Theorem 2 If H finite, then with probability
at least 1− δ, ∀f ∈ co(H), ∀θ > 0,

PrD [yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] +

O

 1
√

m

√
lnm ln |H|

θ2
+ ln

1

δ



Theorem 3 If H has VCdimension d then with
probability at least 1− δ, ∀f ∈ co(H), ∀θ > 0,

PrD [yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] +

O

 1
√

m

√√√√d ln2 m
d

θ2
+ ln

1

δ


Note: no dependence on number of weak hy-
potheses !



A First Lemma

• N > 0, CN - the set of unweighted averages
over N elements from H, i.e.

CN =

g|g(x) =
1

N

N∑
j=1

hj(x), hj ∈ H


• Lemma 4 With probability at least 1− δN

(over the random choice of the training
set), ∀g ∈ CN , ∀θ > 0,

PrD

[
yg(x) ≤

θ

2

]
≤ PrS

[
yg(x) ≤

θ

2

]
+ εN

where

εN =

√√√√ 1

2m
ln

[
(N + 1)|H|N

δN

]
.



A First Lemma - Proof

Proof: For θ and g fixed

Prsample

[
PrD

[
yg(x) ≤ θ

2

]
> PrS

[
yg(x) ≤ θ

2

]
+ εN

]
≤ exp

[
−2mε2N

]
.

By union bound, the probability (taken over
a random choice of S) that ∃g ∈ CN such

that PrD

[
yg(x) ≤ θ

2

]
> PrS

[
yg(x) ≤ θ

2

]
+ εN is

at most ≤ |H|N exp
[
−2mε2N

]
.

Since yg(x) is always a multiple of 1
N , we fi-

nally get that the probability (taken over a ran-
dom choice of S) that ∃θ > 0, ∃g ∈ CN such

that PrD

[
yg(x) ≤ θ

2

]
> PrS

[
yg(x) ≤ θ

2

]
+ εN is

at most ≤ (N + 1)|H|N exp
[
−2mε2N

]
.

We finally set (N + 1)|H|N exp
[
−2mε2N

]
= δN

and get the desired result.



A Second Lemma

Lemma 5 With probability at least 1−δ (over
the random choice of the training set),∀θ > 0,
∀N > 0, ∀g ∈ CN ,

PrD

[
yg(x) ≤

θ

2

]
≤ PrS

[
yg(x) ≤

θ

2

]
+ εN ,

where

εN =

√√√√ 1

2m
ln

[
N(N + 1)2|H|N

δ

]
.

Proof: Just use lemma 1 and plug in δN =
δ

N(N+1).



Main Result

If H finite, then with probability at least 1− δ,
∀f ∈ co(H), ∀θ > 0, we get

PrD [yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] +

O

 1
√

m

√
lnm ln |H|

θ2
+ ln

1

δ

.

Proof

Consider f ∈ co(H), f =
T∑

t=1
atht; then f can be

associated with a distr. Df over H as defined
by the coefficients at.

Moreover we can map f to a distribution Qf
over CN ; a function g ∈ CN distributed accord-
ing to Qf is generated by choosing g1, · · · , gN
ind. at random according to Df and then defin-

ing g(x) = 1
N

N∑
j=1

gj(x).



Main Result, Proof

Note: If we fix x then EDf

[
gj(x)

]
=

T∑
t=1

atht(x) =

f(x) and Eg∼Qf
[g(x)] = f(x).

Therefore

Prg∼Qf

[
yg(x) >

θ

2
, yf(x) ≤ 0

]
≤ exp

[
−Nθ2/8

]
and so

ED

[
Prg∼Qf

[
yg(x) >

θ

2
, yf(x) ≤ 0

]]
≤ exp

[
−Nθ2/8

]
or

PrD,g∼Qf

[
yg(x) >

θ

2
, yf(x) ≤ 0

]
≤ exp

[
−Nθ2/8

]
.

Similarly

PrS,g∼Qf

[
yg(x) ≤

θ

2
, yf(x) > θ

]
≤ exp

[
−Nθ2/8

]
.



Main Result, Proof - cont

Consider f ∈ co(H). For any g ∈ CN , for any
θ > 0 we have:

PrD [yf(x) ≤ 0] ≤ PrD

[
yg(x) ≤

θ

2

]
+

PrD

[
yg(x) >

θ

2
, yf(x) ≤ 0

]

Therefore

Eg∼Qf
[PrD [yf(x) ≤ 0]] ≤ Eg∼Qf

[
PrD

[
yg(x) ≤

θ

2

]]
+

Eg∼Qf

[
PrD

[
yg(x) >

θ

2
, yf(x) ≤ 0

]]

and so

PrD [yf(x) ≤ 0] ≤ Eg∼Qf

[
PrD

[
yg(x) ≤

θ

2

]]
+

ED

[
Prg∼Qf

[
yg(x) >

θ

2
, yf(x) ≤ 0

]]

and therefore

PrD [yf(x) ≤ 0] ≤ Eg∼Qf

[
PrD

[
yg(x) ≤

θ

2

]]
+

exp
[
−Nθ2/8

]
.



Main Result, Proof - finish

Therefore, by lemma 5 we know that with
probability 1 − δ (over the random choice of
the training set) we have

PrD [yf(x) ≤ 0] ≤ exp
[
−Nθ2/8

]
+

Eg∼Qf

[
PrS

[
yg(x) ≤

θ

2

]]
+√√√√ 1

2m
ln

[
N(N + 1)2|H|N

δ

]
and so

PrD [yf(x) ≤ 0] ≤ 2exp
[
−Nθ2/8

]
+

PrS [yf(x) ≤ θ] +

√√√√ 1

2m
ln

[
N(N + 1)2|H|N

δ

]
.

Choosing N = 4
θ2 ln

[
m

ln |H|

]
we get the desired

result.



Boosting increases the margin

Theorem 6 Suppose the base learning algo-
rithm, when called by AdaBoost, generates clas-
sifiers with weighted errors ε1, · · · , εT . Then for
any θ we have

PrS [yf(x) ≤ θ] ≤ 2T
T∏

t=1

√
ε
(1−θ)
t (1− εt)

(1+θ)

Interpretation: if ∀t, εt < 1
2 − γ and if θ < γ,

then PrS [yf(x) ≤ θ] goes to 0 as T →∞.

(If θ is not too large, then the fraction of
the training examples for which yf(x) ≤ θ de-
creases exponentially to 0 exponentially fast
with the number of base classifiers.)


