
15-859(B) Machine Learning Theory

Lecture 02/13/06, Avrim Blum

• PAC model & Occam recap

• Chernoff and Hoeffding bounds, uniform convergence

• MB ⇒ PAC

• MB ⇒ PAC II

• greedy set cover



PAC model recap

• Examples drawn from unknown probability distribution D over

instance space X.

• Labeled by unknown target function

c : X → {0,1}

• For hypothesis h,

err(h) = Pr
x←D

[h(x) 6= c(x)]

• Algorithm PAC-learns C by H if for any c ∈ C, any distrib D,

any given ε > 0, δ > 0, with probability ≥ 1 − δ the algorithm

produces h ∈ H with err(h) < ε.

• Want algorithm to be efficient in running time and number of

examples too.



Basic sample-complexity bound

• After

m ≥
1

ε

[
ln(|H|) + ln

(
1

δ

)]

examples, with probability ≥ 1 − δ, all h ∈ H with err(h) ≥ ε

have êrr(h) > 0. [êrr(h) = empirical error on sample]

• Argument: fix bad h. Prob of consistency ≤ (1 − ε)m ≤ δ/|H|.

Now use union bound.

• “If not too many rules to choose from, then unlikely some bad

one will fool you just by chance.”

• So, if the target concept is in H, and we have an algorithm for

the consistency problem, then we only need this many examples

to achieve the PAC guarantee.

Gives an answer to the question: when does the data justify a hy-

pothesis?



Occam’s razor

A nice way of looking at this bound, in terms of number of bits

needed to describe the hypotheses produced.

• Say we have some description language.

• Say “simple” = “short description”.

• At most 2s hypotheses are < s bits long.

• If number of examples seen satisfies

m ≥
1

ε

[
s ln 2 + ln

(
1

δ

)]
.

then it’s unlikely a bad simple hypothesis will fool you just by

chance.

This holds no matter what your description language is.

Of course, there’s no guarantee that there will be a simple explana-

tion consistent with data. That depends on your representation.



Uniform Convergence

Our basic result only bounds the chance that a bad hypothesis looks

perfect on the data.

What if there is no perfect h ∈ H?

• Another kind of bound is to show that after m examples, with

probability ≥ 1− δ, all h ∈ H have |err(h)− êrr(h)| < ε.

• Called “uniform convergence”.

• Gives justification for optimizing on the training data more gen-

erally.

To prove bounds like this, we need some good tail inequalities: Cher-

noff and Hoeffding bounds.



Tail inequalities

Tail inequality: bound on probability mass in tail of distribution.

• Consider a hypothesis with true error p and let q = 1− p.

• If we see m examples, then the expected fraction of mistakes is

p. The standard deviation σ of this quantity is
√

pq/m.

• A convenient rule for iid Bernoulli trials, in our terminology, is:

Pr[|observed error− true error| > 1.96σ] < 0.05.

• E.g., if we want with 95% confidence for our true and observed

errors to differ by only ε, then we need to see only (1.96)2pq/ε2 <

1/ε2 examples. [worst case is when p = 1/2]

Chernoff and Hoeffding bounds extend to case where we want to

show something is really unlikely, so can rule out lots of hypotheses.



Chernoff and Hoeffding bounds

Consider coin of bias p flipped m times. Let S be the observed #

heads. Let ε ∈ [0,1].

Hoeffding bounds:

• Pr[S
m > p + ε] ≤ e−2mε2, and

• Pr[S
m < p− ε] ≤ e−2mε2.

Chernoff bounds:

• Pr[S
m > p(1 + ε)] ≤ e−mpε2/3, and

• Pr[S
m < p(1− ε)] ≤ e−mpε2/2.

E.g., Pr[S < (expectation)/2] ≤ e−(expectation)/8.

E.g., Pr[S > 2(expectation)] ≤ e−(expectation)/3.



Typical use of these bounds

Theorem 1 After m examples, with probability ≥ 1− δ, all h ∈ H

have |err(h)− êrr(h)| < ε, for

m ≥
1

2ε2

[
ln(|H|) + ln

(
2

δ

)]
.

Proof: Just apply Hoeffding.

• Chance of failure at most 2|H|e−2mε2.

• Set to δ.

• Solve.

So, with prob 1− δ, best on sample is ε-best over D.

Note: this is worse than previous bound (1
ε has become 1

ε2
), be-

cause we are asking for something stronger. Can also get bounds

“between” these two.



Typical use of these bounds (II)

Theorem 2 After m examples, with probability ≥ 1− δ, all h ∈ H

of err(h) > 2ε have êrr(h) > ε, and all h ∈ H of err(h) < ε/2 have

êrr(h) < ε, for

m ≥
6

ε

[
ln(|H|) + ln

(
2

δ

)]
.

So this is useful if belief is that optimal function in H is good but

not perfect. (If optimal has true error < ε/2 then whp the best on

the sample has true error < 2ε.)



Relating PAC and MB models

• The PAC model should be easier than the MB model since we

are restricting examples to be coming from a distribution.

• Can make this formal: show how to convert any MB alg to a

PAC alg.

• Will give two conversion methods.

– First is simpler. Gives sample-size bound of O
(

M
ε log

(
M
δ

))
.

– Second is more complicated (and uses Chernoff). Gives

better bound of O
(
1
ε [M + log(1/δ)]

)
.



MB ⇒ PAC (simpler version)

Theorem 3 If we can learn C with mistake-bound M , then we can

learn in the PAC model using a training set of size O
(

M
ε log

(
M
δ

))
.

Proof:

• Assume MB alg is “conservative”.

• Look at sequence of hypotheses produced: h1, h2, . . ..

• For each one, if consistent with the next 1
ε log M

δ examples, then

stop.

• If hi has error > ε, the chance we stopped was at most δ/M .

So there’s at most a δ chance we are fooled by any of the

hypotheses.



MB ⇒ PAC (better bound)

Theorem 4 We can actually get a better bound of O
(
1
ε [M + log(1/δ)]

)
.

To do this, we will split data into a “training set” S1 of size max
[
4M
ε , 16

ε ln 1
δ

]

and a “test set” S2 of size 32
ε ln M

δ . We will run alg on S1 and test

all hyps produced on S2.

Claim 1: w.h.p., at least one hyp produced on S1 has error < ε/2.
Proof: (tricky!!)

• If all are ≥ ε/2 then expected number of mistakes is ≥ 2M .

• By Chernoff, Pr[≤M ] ≤ e(−expect)/8 ≤ δ.

• View as game: after M mistakes, alg forced to reveal target. If

alg keeps giving bad hyps, then whp will be forced to do it.

Claim 2: W.h.p., best one on S2 has error < ε.

Proof. Suffices to show that good one is likely to look better than

3ε/4 and all with true error > ε are likely to look worse than 3ε/4.
Just apply Chernoff again to the set of M hypotheses....



Learning an OR function revisited

Alternative greedy-set-cover approach to learning OR function:

• Pick literal that captures the most positive examples, without

capturing any negatives.

• Cross of examples covered and repeat.

If there exists an OR function of size r, then:

• If continue until totally consistent, this will find one of size

O(r logm), where m = size of training set.

• If continue until training error ≤ ε/2 then find one of size

O(r log 1
ε).

Using our Occam bound, sample-size is O
(
1
ε

[(
r log 1

ε

)
log(n) + ln 1

δ

])
.

This is slightly worse than Winnow (by log 1
ε).


