15-859(B) Machine Learning
Theory

Avrim Blum
02/01/06

Plan for today:
- problem of “combining expert advice"
- Weighted-majority algorithm
- Generalizations: time-intervals & “sleeping experts"
- Regret-bounds and connections to game-theory
(minimax optimality and correlated equilibria)

Mistake-bound model recap

+ View learning as a sequence of trials.

* In each trial, algorithm is given x, asked to
predict 7(x), and then is told correct value.

* Make no assumptions about how examples
are chosen.

* Goal is to minimize humber of mistakes.

Alg A learns class C with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f € C.

What if there is no perfect function?

Think of as n "experts" giving advice to you.
Want to do nearly as well as best of them
in hindsight.

- Can view each "expert” as a different heC.

- Or, think of the special case of C={single
variable functions}. Goal is efficient alg that
does nearly as well as best single variable.

These are called "regret bounds".
»Show that our algorithm does nearly as
well as best predictor in some large class.

Using "expert” advice
Say we want to predict the stock market.
+ We solicit n "experts” for their advice. (Will the
market go up or down?)

+ We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up up up
down up up down down

Can we do nearly as well as best in hindsight?

[‘expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Using "expert” advice

If one expert is perfect, can get < Ig(n) mistakes
with halving alg.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:

+ Iterated halving algorithm. Same as before, but
once we've crossed off all the experts, restart
from the beginning.

* Makes at most 1g(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

prediction correct]

weights
predictions Y Y

weights

B e < e
o= e o< e
o= e o< e
o< o= ok

predictions N Y

weights

Analysis: do nearly as well as best
expert in hindsight
+ M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)". So,

constant
ratio

Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

+ Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) Idea: smooth out the worst case.

- Also, generalize % to 1- €.

—mIn(1 —¢) + ln(ﬂ;) ~(14¢/2)m 4+ ! In(n)

Solves to: M <
I €

M:=expected | Ar < 1.30m, 4 2Inn e =1/2
- ’”+ " : /

M<115m+4inn —==1/4

unlike most
worst-case
bounds, numbers

M<107m+8Inn —e=1/8 are pretty good.

Analysis

+ Say at time t we have fraction F; of weight on
experts that made mistake.
+ So, we have probability F, of making a mistake, and
we remove an €F; fraction of the total weight.
- wfinul = ﬂ(]'_8 Fl)(l -€ FZ)
= IN(Weina) = In(n) + 2, [In(1 - e F)] < In(n) - € X, F,
(using In(1-x) < -x)
=In(n) - e M. (T F, = E[# mistakes])
+ If best expert makes m mistakes, then In(Wy,) > In((1-€)™).
- Now solve: In(n) - € M > m In(1-¢).

—mIn(1l —¢) + In(n)

M <

~ (14</2ym+ % log(n)

Summarizing

+ At most (1+¢) times worse than best expert in
hindsight, with additive £log(n).

+ Often written in terms of additive loss. If
running T time steps, set epsilon to get additive
loss (2T log n)v/2

- Define average regret in T time steps as:

(avg per-day cost of alg) - (avg per-day cost of best
fixed expert in hindsight).
Goes to O or better as T—oo [= "no-regret” algorithm].

What can we use this for?

* Can use to combine multiple algorithms to do
nearly as well as best in hindsight.
* Can apply RWM in situations where experts
are making choices that cannot be combined.
- Choose expert i with probability p; = w,/%; w;.
- E.g., repeated game-playing, repeated route-
choosing. (Alg generalizes to case where in each
time step, each expert gets a cost in [0,1])

Repeated play of matrix game

* Let's use a no-regret alg.

+ Time-average performance dversay—wrd- e
guaranteed to approach
minimax value V of game (or
better, if life isn't
adversarial).

Algorithm

+ In fact, existence of no-regret
algs yields proof of minimax
thm....

Using algs for online play

* Rows are "experts"”. Pick row j with prob w;/W.,
+ To keep with terminology, let's talk in terms of
gains (doesn't really matter):
- scale matrix entries to range [0,1].
- reward expert of gain g by multiplying by (1+€)
- For any sequence of games, our expected gain
> OPT(1-¢/2) - (Inn)/e,
where OPT is best fixed strategy in hindsight (which is
at least as good as minimax optimal).

+ Claim: this is a proof of the Minimax theorem!

A natural generalization

+ A natural generalization of this setting: say we have a
list of n prediction rules, but not all rules fire on any
given example.

-+ E.g., document classification. Rule: “if <word-X> appears
then predict <¥>". Eg., if has football then classify as
sports.

- E.g., path-planning: “on snowy days, use this route”.

+ Natural goal: simultaneously, for each rule i, guarantee to
do nearly as well as it on the time steps in which it fires.

- For all i, want E[cost(alg)] < (1+€)cost (i) + O(etlog n).

+ So, if 80% of documents with football are about sports,
we should have error < 21% on them.

“Specialists” or “sleeping experts” problem.

Why?

*+ What would it mean for minimax to be false?

- If we know opponents randomized strategy, we can get
expected gain > V, but if we have to choose our
randomized strategy first, then opponent can force us to
get <V -0

+ This contradicts our bound if we use € = 3. Our gain
per game is approaching OPT(1-¢/2), where OPT > V.

* Inother words: if there was a gap (V versus V - 9),
then for any randomized strategy we chose, an
opponent knowing our strategy could force us to
get no more than V - 3 on average per play.

+ But, we are doing better.

A natural generalization
Generalized version of randomized WM:
+ Initialize all rules to have weight 1.
+ At each time step, of the rules i that fire,
select one with probability p; « wi.
+ Update weights:
- If didn't fire, leave weight alone.
- If did fire, raise or lower depending on performance
compared to weighted average:
* R; = [X; p; cost(j)]/(1+€) - cost(i)
s wi — wi(l+e)Ri
+ So, if rule i does exactly as well as weighted average, its
weight drops a little. Weight increases if does befter
thah weighted average by more than a (1+€) factor.

+ Can then prove that total sum of weights never goes up.
+ Can extend to rules that can be fractionally on too.

Why does this work?

+ Update weights:
- If didn't fire, leave weight alone.

- If did fire, raise or lower depending on performance
compared to weighted average:

*R=[Zp cost(j)1/(1+€) - cost(i)
- W, wi(Lee)Ri
+ Can then prove that total sum of weights never goes up.

+ One way to look at weights:
-w = (1+€)E[cusf.(u|g)]/(1+5)- costi(i)

- ILe., we are explicitly giving large weights to rules for
which we have large regret.

- Since sum of weights < n, exponent must be < logy,.n

+ Can extend to rules that can “partially fire" too.

More general forms of regret

1. "best expert” or “"external” regret:

- Given n strategies. Compete with best of them
in hindsight.

2. "sleeping expert” or "regret with time-
intervals":

- Given n strategies, k properties. Let S; be set
of days satisfying property i (might overlap).
Want to simultaneously achieve low regret over
each S,.

3. “internal” or "swap" regret: like (2), except
that S, = set of days in which we chose

strategy i.

Internal/swap-regret

E.g., each day we pick one stock to buy
shares in.

- Don't want to have regret of the form "every
time I bought IBM, T should have bought
Microsoft instead”.

* Real motivation: connection to correlated
equilibria.

- Distribution over entries in matrix, such that if
a trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

- E.g., Shapley game.

Internal/swap-regret, contd

If all parties run a low internal/swap regret

algorithm, then empirical distribution of

play is an apx correlated equilibrium.
Correlator chooses random time t € {1,2,...,T}.
Tells each player to play the action j they
played in time t (but does not reveal value of t).
Expected incentive to deviate:X Pr(j)(Regret||)
= swap-regret of algorithm

So, this gives a nice distributed way to get apx
correlated equilibria in multiplayer games.

Internal/swap-regret, contd

Algorithms for achieving low regret of this
form:
- Foster & Vohra, Hart & Mas-Colell, Fudenberg
& Levine.
- Can also convert any "best expert” algorithm
into one achieving low swap regret.

- Unfortunately, time to achieve € regret is
linear in n rather than log(n)....

