
15-859(B) Machine Learning Theory

Avrim Blum (avrim@cs.cmu.edu) Lecture 1: January 18, 2006

1 Administrivia

The course web page is http://www.cs.cmu.edu/~avrim/ML06/. There will be 6 homework
assignments, a final (possibly in-class or possibly take-home, worth about 2 homeworks),
and a small project. You will also be asked to help grade one of the homeworks. The book
for this course is Kearns and Vazirani, An Introduction to Computational Learning Theory.
It’s not crucial but good to have. It covers about 1/2 of the course material. The first set of
lectures (on learning in the “mistake-bound” model) will be on material not in the book, so
you have a couple weeks to get it. We will also have lecture notes and handouts for material
not in the book. See the course information guide on the web page for more details.

2 What is machine learning theory about?

The goal of creating programs or machines that learn with experience is one of the oldest
in computer science. It’s a key component of “strong AI”. But also as a practical matter
we want programs that can adapt to change, that can learn to do things that are hard
to program explicitly, that can adapt to the needs of their users, and that can find useful
information in large volumes of data.

Unfortunately, by its nature, machine learning is a little fuzzy. After all, the goal is to learn
something we don’t know. Nonetheless, we would like provide a mathematical framework
and foundation for machine learning to aid in our understanding and improve our ability to
make progress. The goals of computational learning theory include:

• To create mathematical models that capture key aspects of machine learning.

• To prove guarantees for algorithms (when will they succeed, how long will they take?),
and to develop algorithms that provably meet desired criteria; to provide guidance
about which algorithms to use when.

• To analyze the inherent ease or difficulty of learning problems.

• To mathematically analyze general issues, such as: “why is Occam’s Razor a good
idea?”
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2.1 Models of Learning

A mathematical model of machine learning needs to specify a number of things: the kind
of task we are considering (learning a concept from data? learning to play a game?), the
kind of data we have (are we passively shown examples? do we actively get to ask questions
or play the game?), the kind of feedback we get (right away? only after the game is over?
depends on the action we take?), and what is our criteria for success.

What is it that makes a model a good one? Sometimes a model is good because it accurately
reflects common learning settings. The real test of a model, though, is whether one can gain
important insights through it. We will see, for instance, that the main models used in
computational learning theory are robust to variations in their definitions, and allow us to
focus on fundamental issues.

For most of this course we will focus on the problem of concept learning. We are given data
(say documents classified into topics) and we want to be able to learn from this data to
classify future examples well. This seems like a very restricted form of learning, but it turns
out that most methods for other kinds of learning end up solving this sort of problem at
their core. For example, in Pomerleau’s ALVINN system for learning how to drive a car, the
basic learning algorithm used is given picture images as input and steering directions as the
label.

What is the best we could hope to guarantee for a learning algorithm? If we are extremely
optimistic, we could hope to make a guarantee of the form: “If there exists a polynomial-time-
computable rule that has a low error rate, then our algorithm will find one.” Unfortunately,
cryptography tells us that this is too much to expect: the existence of hard cryptographic
functions means that it’s possible for simple functions to produce data that looks completely
random to any efficient algorithm. Furthermore, even if you ignore computation time, there
is the issue of only having a limited amount of training data. However, we will be able to
make guarantees of this form for more reasonable goals.

2.2 Complexity Theory and Statistics/Information-Theory

Actually, there’s an important point I’d like to make here. There are two main parts to ma-
chine learning theory. One is complexity-theoretic: how computationally hard is the learning
problem? The other is statistical or information-theoretic: how much data do I need to
see to be confident that good performance on that data really means something? These
are both important questions, and we’ll see a lot of interesting theory in both directions.
It’s important to keep in mind which of these is your focus at any given time (e.g., asking
yourself “would this be trivial if I had unlimited computational power?” or “would this be
intractable if I didn’t?”). For instance, the statement in the last paragraph about cryptog-
raphy was really under the assumption of limited computational power. If our focus is just
on how much data we need, we will see in a natural learning model that we can get this kind
of guarantee if we have enough data because of a basic simple theorem (sometimes called

2



the “Occam’s razor theorem”) that implies you only need an amount of data proportional to
the number of bits it takes to write down the target function. Later we’ll see results showing
that you can sometimes do with quite a bit less data than that.

3 Some definitions to get us started

• Examples are typically described by their values on some set of features or variables

(we will use these words interchangeably). For instance, if we are trying to predict if
it will rain, the first feature might be whether or not it was cloudy in the morning,
the second feature might be whether the weather channel said it would rain, the third
feature might be whether Channel 11 said it would rain, etc. If there are n boolean
features, then we can think of examples as elements of {0, 1}n. If there are n real-
valued features, then examples are points in Rn. The space that examples live in is
called the instance space X.

• A labeled example is an example together with a labeling (e.g., positive or negative).

• A concept is a boolean function over an instance space. For instance, the concept
x1 ∧ x2 over {0, 1}n is the boolean function that outputs 1 on any example whose first
two features are set to 1.

• A concept class is a set of concepts, typically with an associated representation. For
instance, the class of “monotone conjunctions” consists of all concepts that can be
expressed as a conjunction of variables.

Some concept classes contain both simpler and more complicated concepts. For in-
stance, decision trees can be small or large. In these cases, we will need to talk about
the size of a concept which will be some approximation of the number of bits in its
representation (e.g., the number of nodes in the decision tree).

4 The Consistency Model

The consistency model is not a particularly great model of learning, but it’s simple and is a
good place to start.

Definition 1 We say that algorithm A learns class C in the consistency model if given any

set of labeled examples S, the algorithm produces a concept c ∈ C consistent with S if one

exists, and outputs “there is no consistent concept” otherwise.

We’d also like our algorithm to run in polynomial time (in the size of S and the description
length of concepts in C). So, this should seem like very natural definition if you’re an
algorithms/complexity/optimization person.
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Let’s now consider the learnability of several simple classes in the consistency model. Then
we’ll critique the model at the end.

AND functions (monotone conjunctions). This is the class of functions like x1x4x7,
which is positive whenever the 1st, 4th, and 7th features are on. For example, the
following set of data has a consistent monotone conjunction:

1 0 1 1 0 0 1 1 +

1 1 1 1 1 0 1 0 +

0 1 1 1 0 0 1 1 +

0 0 0 1 1 1 1 1 -

1 1 1 1 1 0 0 0 -

We can learn this class in the consistency model by the following method:

1. Throw out any feature that is set to 0 in any positive example. Notice that these
cannot possibly be in the target function. Take the AND of all that are left.

2. If the resulting conjunction is also consistent with the negative examples, produce
it as output. Otherwise halt with failure.

Since we only threw out features when absolutely necessary, if the conjunction after
step 1 is not consistent with the negatives, then no conjunction will be.

OR functions (monotone disjunctions) We can do the same as above except swapping
positive/negative and 1/0. We throw out all variables set to 1 by some negative example
and check to see if the OR of the remainder is consistent with the positive examples.

Non-monotone conjunctions, disjunctions, k-CNF, k-DNF. What about functions like
x1x̄4x7? Instead of thinking about this from scratch, we can just perform a reduction
to the monotone case. If we define yi = x̄i then we can think of the target function as a
monotone conjunction over this space of 2n variables and use our previous algorithm.
k-CNF is the class of Conjunctive Normal Form formulas in which each clause has size
at most k. E.g., x4(x1∨x2)(x2∨ x̄3) is a 2-CNF. So, the 3-CNF learning problem is like
the inverse of the 3-SAT problem: instead of being given a formula and being asked to
come up with a satisfying assignment, we are given assignments (some satisfying and
some not) and are asked to come up with a formula. k-DNF is the class of Disjunctive
Normal Form formulas in which each term has size at most k. We can learn these
too by reduction: e.g., we can think of k-CNFs as conjunctions over a space of O(nk)
variables, one for each possible clause.

Decision lists. A Decision List is a list of if-then rules where each condition is a literal (a
variable or its negation). For example, say I like to go for a walk if it’s warm or if it’s
snowing and I have a jacket, so long as it’s not raining. We could describe this as a
decision list like this:
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if rainy then no

else if warm then yes

else if not(have-jacket) then no

else if snowy then yes

else no.

If you like, you can think of this as a decision tree with just one long path. Let’s find an
algorithm to learn DLs in the consistency model. Extending this to the Mistake-bound
model (which we’ll talk about next time) is on the homework. Here’s an algorithm:

1. Find some rule consistent with the current set of examples that applies to at least
one of them. If no such rule exists, halt with failure.

2. Put the rule at the bottom of the hypothesis.

3. Throw out those examples classified by the hypothesis so far.

4. If there are any examples left, repeat from the beginning.

E.g.,
1 0 0 1 1 +
0 1 1 0 0 −
1 1 1 0 0 +
0 0 0 1 0 −
1 1 0 1 1 +
1 0 0 0 1 −

It is clear that this algorithm runs in polynomial time, since each iteration removes at
least one example, and each iteration can be performed in polynomial time. What we
now need to show is that if there exists a consistent list, this algorithm will find one.

Proof: If there is a decision list L consistent with remaining data, then there is at
least one choice for step 1 (the highest rule in L satisfied by at least one example).
Furthermore, if there was a consistent DL at the beginning, then there must exist a
DL consistent with the remaining data — namely, the original one.

Linear separators. Here we can think of examples as being from {0, 1}n or from Rn. The
goal is to find a hyperplane w · x = w0 such that all positive examples are on one side
and all negative examples are on other. I.e., w · x > w0 for positive x’s and w · x < w0

for negative x’s. We can solve this using linear programming. In practice, people tend
to use incremental algorithms like perceptron or winnow or maximum entropy for this
problem, because of tolerance to noise (and good speed in practice).

2-term DNF, 2-term CNF. A 2-term DNF is an OR of two conjunctions. A 2-term CNF
is an AND of two disjunctions. An intersection of 2 halfspaces is a formula like “x is
positive if w · x > w0 and v · x > v0”. These learning problems are all NP-hard in the
consistency model.
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General DNF formulas. Warning: this is misleading!!! These are easy since you can just
create one term for every positive example.

5 Critique of the consistency model

Let’s think about some problems with the consistency model. One big problem just came
up in the last example: the DNF learner doesn’t really seem like it’s learning. You wouldn’t
especially have any confidence in its ability to predict on new data. In a sense, the problem is
that the size of its hypothesis grows linearly with the amount of training data. In fact, we’ll
see later a converse to this: being able to get a hypothesis of size sublinear in the amount of
data does imply being able to predict on new examples, in the PAC model (this is a model
in which examples come from a distribution, but we’ll get back to that later).

A second problem is that it seems strange that k-term DNF aren’t learnable but k-CNF are,
even though the latter can express any function that the former can. In a sense, this is saying
more about the hypothesis representation of the algorithm than the fundamental hardness
of predicting. Sometimes this is what you want: for example, if you are designing a neural
net algorithm (so you are committing to a specific hypothesis representation) it would be
nice to know how hard the consistency problem is so you know what is reasonable to expect.
(As it turns out, even for very simple neural nets, the consistency problem is NP-complete.)

Yet a third problem with the consistency model is often there isn’t any consistent rule in the
class, but you still would like to find a pretty good one if possible. The problem of simply
finding the (approximately) best rule in some class is sometimes called agnostic learning,
Unfortunately, this is NP-hard even for the class of conjunctions. So it may be hard to say
much algorithmically, although we can still talk about sample-size issues. We’ll get back to
this later in the PAC model. In fact, there are some very recent positive algorithmic results
if you are willing to assume that data points are drawn from some “natural” distribution.

6 Open problems

Let me end with two (very hard) open problems:

• Weak agnostic learning of conjunctions: Is there a polynomial time algorithm
that given a set S of labeled examples over {0, 1}n will produce a conjunction consistent
with at least 51% whenever there exists a conjunction consistent with at least 99% of
them?

• Learning an intersection of halfspaces via some other representation: We
saw that we can learn 2-term CNF via the class of 2-DNF. Is there an analogous way
to learn the class of “ANDs of two halfspaces” in polynomial time via some other class
(where the hypothesis size does not grow linearly with the number of examples)?
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