
15-859(B) Machine Learning Theory

Homework # 6 Due: April 26, 2006

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. DFAs. A distinguishing sequence for a DFA is a sequence of actions such that the
observations produced from these actions uniquely determines the starting state. I.e.,
a sequence h such that if q 6= q′ then obs(q, h) 6= obs(q′, h).

(a) Describe a strongly-connected DFA that has no distinguishing sequence. Note
that the definition of “q 6= q′” is that there must exist a sequence hqq′ such that
obs(q, hqq′) 6= obs(q′, hqq′), it’s just that no single h works for all pairs.

(b) Give a homing sequence for your DFA.

Problems:

2. Fourier. Suppose f is a function from {0, 1}n to {−1, 1}, and g is an approximation
to the fourier representation of f . Specifically, 〈f, g〉 = Ex∈D[f(x)g(x)] = 1 − ε and
g(x) ∈ [−1, 1]. Then, as we noticed in class, even if g is not a boolean function,
Prx∈D(sign(g(x)) 6= f(x)) ≤ ε. That is because whenever sign(g) is incorrect we have
f(x)g(x) ≤ 0. So, we can use sign(g) as a good approximation to f .

However, what if we are only able to capture “some” of the fourier representation of
f . E.g., 〈f, g〉 = 0.1, or even 〈f, g〉 = 0.5. Then, even though g has a reasonable
correlation with f in the fourier sense, the guarantee on sign(g) is vacuous.

Give an alternate construction ḡ based on g with the property that if 〈f, g〉 = 1 − ε
then Pr(ḡ(x) 6= f(x)) ≤ ε/2. So, this is now useful for the whole range of ε < 1. Again,
assume g(x) ∈ [−1, 1] for all x. Hint: you may want ḡ to be a probabilistic function.

3. Sample complexity bounds. For some learning algorithms, the hypothesis produced
can be uniquely described by a small subset of k of the training examples. E.g., if you
are learning an interval on the line using the simple algorithm “take the smallest interval
that encloses all the positive examples,” then the hypothesis can be reconstructed
from just the outermost positive examples, so k = 2. For conservative Mistake-Bound
learning algorithm algorithms, you can reconstruct the hypothesis by just looking at
the examples on which a mistake was made, so k ≤ M , where M is the algorithm’s
mistake-bound.
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Prove a PAC guarantee based on k. Specifically, fixing a description language (recon-
struction procedure), so for any set S ′ of examples we have a well-defined hypothesis
hS′, show that

Pr
S∼Dn

(

∃S ′ ⊆ S, |S ′| = k, such that hS′ has 0 error on S − S ′ but true error > ε
)

≤ δ,

so long as

n ≥
1

ε

(

k ln n + εk + ln
1

δ

)

.

Hint: Think of S ′ as a subset of indices, and imagine drawing points in S by drawing
those in S ′ first.

Note the similarity of the form of this bound to VC-dimension and other bounds we
have seen. These are often called “compression bounds”.
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