
15-859(B) Machine Learning Theory

Homework # 5 Due: April 5, 2006

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

In the first part of this assignment, we will derive an algorithm for learning decision trees
of size s in time nO(log s) in the PAC model (or with nO(log s) mistakes and time-per-stage
in the mistake-bound model). In fact, we will be able to do this with a statistical query
algorithm. This matches the lower bound of nΩ(log n) for learning size-n decision trees with
SQ algorithms that we proved in class.

Exercises:

1. A k-decision list is a decision list where each rule has as its precondition a conjunction
of up to k literals. For instance, the function: “if x1x̄2 then +, else if x̄1x3 then −, else
if x4 then +, else −” is a 2-decision list.

(a) Describe briefly why the class of k-decision lists can be learned with mistake
bound O(n2k).

(b) Describe how you can learn k-decision lists in the SQ model.

2. The rank of a decision tree is defined as follows. If the tree is a single leaf then the
rank is 0. Otherwise, let rL and rR be the ranks of the left and right subtrees of the
root, respectively. If rL = rR then the rank of the tree is rL + 1. Otherwise, the rank
is the maximum of rL and rR. For example, the decision tree in Figure 2.2 in the book
has rank 3.

Prove that a decision tree with ` leaves has rank at most log2(`).

Problems:

3. Show that the class of rank-k decision trees is a subclass of k-decision lists.

Hint: Use induction on the depth of the tree. (Actually, there are several different
ways of proving this.)

Thus, we conclude that we can learn constant rank decision trees in polynomial time,
and we can learn arbitrary decision trees of size s in time and number of examples
nO(log s). (So this is “almost” a PAC-learning algorithm for decision trees.)

In the rest of this homework you will show that the class of polynomial-size boolean formulas
is equivalent to the class NC1. NC1 is the class of O(log n)-depth {AND, OR, NOT} circuits



where each gate has at most 2 inputs. Boolean formulas are just the generalization of DNF
in which we allow ANDs and ORs to appear in any order, e.g., x1 ∨ (x2 ∧ (x̄1 ∨x3)); you can
think of a Boolean formula as a circuit that looks like a tree, except the inputs are allowed
to have out-degree greater than 1. This is also exercise 6.2 (p.141) in the book.

4. Show that for any circuit of depth d of {AND, OR, NOT} gates with fanin ≤ 2, there
is an equivalent boolean formula of size O(2d). Thus, NC1 is contained in the class of
polynomial-size boolean formulas.

5. Show that for any boolean formula of size s, there exists an equivalent circuit of depth
O(log s). Thus polynomial-size boolean formulas are contained in the class NC1.

Thus, this implies our hardness results for learning NC1 carry over to general Boolean formu-
las (can’t even weak-learn in poly-time over the uniform distribution, even with membership
queries, under cryptographic assumptions). Note: question 4 should be pretty straightfor-
ward. Question 5 is trickier.

2


