
15-859(B) Machine Learning Theory

Homework # 2 Due: February 13, 2006

Groundrules: Same as before. You should work on the exercises by yourself but may work
with a partner on the problems (just write down who you worked with). Also if you use
material from outside sources, say where you got it.

Exercises:

1. Weighted-majority. For this problem you may use either the deterministic or ran-
domized weighted-majority algorithm.

(a) Suppose we have some initial belief about which expert is likely to be the best
one. In that case, a natural modification to the Weighted-Majority algorithm is
that instead of initializing all the weights to 1, we instead initialize wi = pi, where
pi is our initial belief that expert i is going to be best (

∑
n

i=1
pi = 1). Show how

this results in a bound where the ln n term is replaced with ln(1/pi). For example,
if you pick the randomized algorithm, you should get a statement that for all i,

M ≤
1

ε
[mi ln(1/(1 − ε)) + ln(1/pi)] ,

where mi is the number of mistakes of expert i. So, this bound is better if our
prior beliefs turn out to be reasonable.1

(b) What if we have (countably) infinitely many experts? Use your answer to part
(a) to show how you can replace ln n with O(log i) in comparing our performance
to that of the ith expert.

2. A bad modification to Winnow. Suppose that we modify Winnow so that it
doubles its weights on positive examples even when it did not make a mistake. Show
how this can cause the algorithm to make an unbounded number of mistakes, even if
all examples are consistent with some disjunction.

Problems:

3. Perceptron for approximately maximizing margins. In class we saw that the
perceptron algorithm makes at most 1/γ2 mistakes on any sequence of examples that is
linearly-separable by margin γ (i.e., any sequence for which there exists a unit-length
vector w∗ such that all examples x satisfy `(x)(w∗ · x)/||x|| ≥ γ, where `(x) ∈ {−1, 1}
is the label of x).

1Notice that in this analysis we are not assuming that the best expert is actually picked from our prior.

We simply are producing a bound that depends on what our beliefs were.



Suppose you are handed a set of examples S and you want to actually find a large-
margin separator for them. One approach is to directly solve for the maximum-margin
separator using convex programming (which is what is done in the SVM algorithm).
However, if you only need to approximately maximize the margin, then another ap-
proach is to use Perceptron. In particular, suppose you cycle through the data using
the Perceptron algorithm, updating not only on mistakes, but also on examples x that
your current hypothesis gets correct by margin less than γ/2. Assuming your data is
separable by margin γ, show that this is guaranteed to halt in a number of rounds that
is polynomial in 1/γ. (In fact, you can replace γ/2 with (1− ε)γ and have bounds that
are polynomial in 1/(εγ).)

4. Tracking a moving target. Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).

(b) We predict the result of a weighted-majority vote of the experts (as before).

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only

if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th
example), the number of mistakes made by the algorithm is at most O(m + log n),
where m is the number of mistakes made by the best expert in that block, and n is the
total number of experts.
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