15-859(A) Machine Learning
Theory

Avrim Blum
01/20/04

Plan for today:
- MB model recap.
- problem of "combining expert advice’
- Weighted-majority alg and applications

Mistake-bound model recap

* View learning as a sequence of trials.
+ In each trial, algorithm is given x, asked to

predict f(x), and then is told correct value.

* Make no assumptions about how examples

are chosen.

» Goal is to minimize number of mistakes.

Alg A learns class C with mistake bound M if A
makes < M mistakes on any sequence of examples
consistent with some f € C.

Simple example: learning an OR fn
- Suppose features are boolean: X = {0,1}".

- Target is an OR function, like x5 v X5 Vv X5,
with no noise.

+ Can we find an on-line strategy that makes
at most n mistakes?

+ Sure.

- Start withh(x)=x; vx,v..vx,

- Invariant: {vars in h} contains {vars inf}

- Mistake on negative: throw out vars in h set to 1
in x. Maintains invariant and decreases |h| by 1.

- No n'\istakes on positives. So at most n mistakes
total.

Simple example: learning an OR fn

- Algorithm makes at most n mistakes.
+ No deterministic alg can do better:

1000000 +or-?
0100000 +or-?
0010000 +or-?
0001000 +or-?

What can we do with
unbounded computation time?

* "Halving algorithm": take majority vote
over all consistent h € C. Makes at most
Ig(IC[) mistakes.

* More generally, for any (prefix-free)
description language, can make at most 1
mistake per bit to describe target fn.

- give each h a weight of (§)size®
- Total sum of weights < 1.

- Take weighted vote. Each mistake cuts total
weight left by at. least a factor of 2.

Is halving alg optimal?

+ Not necessarily (see hwk).
« Can think of MB model as 2-player game

between alg and adversary.

- Adversary picks x to split C into C (x) and
C.(x). [fns that label x as - or + respectively]

- Alg gets to pick one to throw out.
- Game ends when all fns left are equivalent.

- Adversary wants to make game last as long as
possible.

+ OPT(C) = MB when both play optimally.

Optimal strateqy

* What is the optimal strategy for the
algorithm?

+ Given x, we "just” calculate OPT(C_(x)) and
OPT(C.(x)). Throw out the one that's
worse.

+ Equivalently: can define OPT(C) as:

- If |C|=1 then OPT(C) = 0. Else,
- OPT(C) = 1 + max,[min[OPT(C_(x)),OPT(C.(x)1]

Next topic

* What if there's no perfect function?

* Think of as n "experts” giving advice to
you. Want to do nearly as well as best of
them in hindsight.

- Can view each "expert” as a different heC.

- Or, think of the special case of C={single
variable functions}. Goal is efficient alg that
does nearly as well as best single variable.

These are called "regret bounds”.

»Show that our algorithm does nearly as well

as best predictor in some large class.

Using "expert"” advice

Say we want to predict the stock market.
-+ We solicit n "experts” for their advice. (Will the
market go up or down?)
* We then want to use their advice somehow to
make our prediction. E.g.,
Expt 1 Expt 2 Expt 3 neighbor’s dog | truth

down up up up up
down up up down down

Can we do nearly as well as best in hindsight?

["expert® = someone with an opinion. Not necessarily
someone who knows anything.]

Using "expert” advice

If one exrert is perfect, can get < Ig(n) mistakes
with halving alg.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:

+ Iterated halving algorithm. Same as before, but
once we've crossed off all the experts, restart
from the beginning.

+ Makes at most log(n)*[OPT+1] mistakes, where
OPT is #mistakes of the best expert in
hindsight.

Seems wasteful. Constantly forgetting what we've
" 12)

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
of f, just lower its weight.

Weighted Majority Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

prediction correct
weights
predictions
velights
predictions
veights

Y Y

N Y

[P ITP
o om e e e
"m:»-<—
me i m e

Analysis: do nearly as well as best
expert in hindsight
* M = # mistakes we've made so far.
+ m= # mistakes best expert has made so far.
+ W = total weight (starts at n).

+ After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M,
+ Weight of best expert is (1/2)". So,

(4/3)M < n2m
<

M < 2.4(m+lgn)

Randomized Weighted Majority

2.4(m + Ig n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

- Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick
70:30) Idea: smooth out the worst case.

* Also, generalize £ to 1- ¢,

Zmin(t - &) +1n(n) _:) £ (14 e/2)m+ % In(n)
M<139m42Inn o= 1/2

Solves to: M <

unlike most
worst-case
bounds, numbers
are pretty good.

M < 115m 4 4inn - r==1/4

M<1.07m+8inn «&=1/8

Analysis

Say at time t we have fraction F, of weight on
experts that made mistake.

So, we have probability F, of making a mistake, and
we remove an £F, fraction of the total weight.
- Weinat = N1-e F)(1- e F,)...
- IN(Weing) = In(n) + Z, [In(1 - e F)] < In(n) - e Z, F,
(using In(1-x) < -x)

= In{n) - e M. (X F, = E[# mistakes])

+ If best expert makes m mistakes, then In(Wg,..) > In((1-e)™).

Now solve: In(n) - e M > m In(1-€).

—mIn(1 -) 4+ in(n)
I3

M <

~ (14+e/2)m+ % log(n)

Summarizing

+ At most (1+£) times worse than best
expert in hindsight, with additive £log(n).

* If have prior, can replace additive term
with e log(1/p,). [e™! x number of bits]

+ Often written in terms of additive loss.
If running T time steps, set epsilon to get
additive loss (2T log n)/2

What can we use this for?

Can use to combine multiple algorithms to do nearly
as well as best in hindsight.

Can apply RWM in situations where experts are
making choices that cannot be combined.

- E.g., repeated game-playing.

- E.g., online shortest path problem

[OK if losses in [0,1]. Replace F,with P.L,and penalize

expert i by (1-g)ksst)]

Extensions:

- "bandit” problem.

- efficient algs for some cases with many experts.

- Sleeping experts / “specialists” setting.

A nice application

+ Play repeated game to do nearly as well as
best strategy in hindsight.

* (This will be at least as good as minimax
optimal).
* Gives a proof of minimax theorem.

2-player zero-sum games

E.g., Rock-Paper-Scissors.

=
]

Payof? to row piayer:

O+

R
P
S

=0
X1
|

» Minimax optimal strategy: (randomized) strat-
egy with best worst-case guarantee.
What Is minimax optimal for RPS?

¢ What about the game below:

N D
Payoff to row player: N|!-5 5
D|10 -10

Optimal strategy for row player?

Column player?

———___The minrmax theorem

N D
N[-5 [
D|10 -10

* Suppose that for any (randomized) strategy
of your opponent, there exists a deterministic
counter-strategy for you that guarantees you
an expected gain > V.

Then, there exists a randomlzed strategy for
you such that for any counter-strategy of the
you get an galn >V.

Equivaiently:

maxmin E| = minmax E|
paxmin [payofr] in max {payoff]

Le., suppose that for all S,y there exists Syow
such that expected gain is > V. Then there
exists 3 fixed Syow SUCh that for all S, the
expected gain Is > V too.

(strateqy = randomized strategy)

Using RWM for online play

* rows are "experts”. Pick row j with prob w/W.
* To keep with terminology, let's talk in terms of
gains (doesn't really matter):
- scale matrix entries to range [0,1].
- reward expert of gain g by multiplying by (1+€)9
- For any sequence of games, our expected gain
> OPT(1-¢/2) - (In n)/e,
where OPT is best fixed strategy in hindsight (which is
at least as good as minimax optimal).
+ We've actually just proven the Min-Max theorem!

Why?
What would it mean for min-max to be false?

- If we know opponents randomized strategy, we can get
expected gain > V, but if we have to choose our
randomized strategy first, then opponent can force us to
get <V-34.

This contradicts our bound if we use € = 8. Our gain

per game is approaching OPT(1-¢/2), where OPT > V.,

In other words: if there was a gap (V versus V - §),
then for any randomized strategy we chose, an
opponent knowing our strategy could force us to
get no more than V - § on average per play.

But, we are doing better.

