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2 High-Dimensional Space

2.1 Introduction

In many applications, data is in the form of vectors. In other applications, data is not
in the form of vectors, but could be usefully represented by vectors. The Vector Space
Model [SWY75] (also called the Bag of Words model) is a good example. In this model, a
document is represented by a vector, each component of which corresponds to the number
of occurrences of a particular term in the document. That is, all linguistic structure in
the text is ignored, and the document is just viewed as a “bag of words”, arranged in
a vector where component i is the number of occurences of the ith word. The English
language has on the order of 25,000 words, or terms, so each document is represented by
a 25,000 dimensional vector. A collection of n documents is represented by a collection
of n vectors, one vector per document. The vectors may be arranged as columns of a
25, 000 × n matrix. See Figure 2.1. A query is also represented by a vector in the same
space. The component of the vector corresponding to a term in the query, specifies the
importance of the term to the query. To find documents about cars that are not race
cars, a query vector will have a large positive component for the word car and also for the
words engine and perhaps door, and a negative component for the words race, betting, etc.

One needs a measure of relevance or similarity of a query to a document. The dot
product of two vectors, or the cosine of the angle between them (which is the dot product
normalized by the lengths of the two vectors), is an often used measure of similarity. To
respond to a query, one computes the dot product or the cosine of the angle between
the query vector and each document vector and returns the documents with the highest
values. While it is by no means clear a priori that this approach will do well for the
information retrieval problem, many empirical studies have established the effectiveness
of this general approach.

The vector space model is useful in ranking or ordering a large collection of documents
in decreasing order of importance. For large collections, an approach based on human un-
derstanding of each document is not feasible. Instead, an automated procedure is needed
that is able to rank documents with those central to the collection ranked highest. Each
document is represented as a vector with the vectors forming the columns of a matrix A
(perhaps normalized so that all columns have Euclidean length 1). The similarity of pairs
of documents is defined by the dot product of the vectors. All pairwise similarities are
contained in the matrix product ATA. If one assumes that the documents central to the
collection are those with high similarity to other documents, then computing ATA enables
one to create a ranking. Define the total similarity of document i to be the sum of the
entries in the ith row of ATA and rank documents by their total similarity. It turns out
that with the vector representation on hand, a better way of ranking is to first find the
best fit direction. That is, the unit vector u, for which the sum of squared perpendicular
distances of all the vectors to u is minimized. See Figure 2.2. Then, one ranks the vectors
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Figure 2.1: A document and its term-document vector along with a collection of docu-
ments represented by their term-document vectors.

best fit line

Figure 2.2: The best fit line is the line that minimizes the sum of the squared perpendicular
distances.

according to their dot product with u. The best-fit direction is a well-studied notion in
linear algebra. There is elegant theory and efficient algorithms presented in Chapter ??
that facilitate the ranking as well as applications in many other domains.

In the vector space representation of data, properties of vectors such as dot products,
distance between vectors, and orthogonality, often have natural interpretations and this
is what makes the vector representation more important than just a book keeping device.
For example, the squared distance between two 0-1 vectors representing links on web
pages (so here we are not normalizing them to all have the same length) is the number of

web page 4

(1,0,1,0,0,1)

web page 5

(1,1,1,0,0,1)

Figure 2.3: Two web pages as vectors. The squared distance between the two vectors is
the number of web pages linked to by just one of the two web pages.
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web pages linked to by only one of the pages. In Figure 2.3, pages 4 and 5 both have links
to pages 1, 3, and 6, but only page 5 has a link to page 2. Thus, the squared distance
between the two vectors is one. We have seen that dot products measure similarity.
Orthogonality of two nonnegative vectors says that they are disjoint. Thus, if a document
collection, e.g., all news articles of a particular year, contained documents on two or more
disparate topics, vectors corresponding to documents from different topics would be nearly
orthogonal.

2.1.1 A simple algorithm
[[A clean algo
and intro to
thinking in
high dim
space. A
good ex to do
on the board:
((1,0) +),
((1,1) +),
((0,1) -).]]

A common task to perform with data is what is called binary classification: given a
new document, classify it as interesting or not interesting for a user, or given an email
message, classify it as spam or not spam. We will discuss algorithms and basic principles
for using data to find good classification rules in Chapter ?? on Machine Learning. Here,
we present a simple classic algorithm for vector data called the Perceptron Algorithm
[Blo62, Nov62, MP69].

Assume we have a collection of data points x1,x2, . . . ,xn (e.g., documents or email
messages) in d-dimensional space, each labeled as positive (interesting) or negative (not
interesting, spam). In machine learning, these would be called training examples. Our
goal is to find a weight vector w such that w ·xi > 0 for all the positive training examples
xi and w · xi < 0 for all the negative training examples xi, if such w exists. Let’s assume
such a weight vector w∗ indeed exists, and without loss of generality (since we are using a
threshold of 0) we may assume that w∗ has Euclidean length 1. Let’s also assume that all
of our data points have been scaled to have Euclidean length 1 (which will also not affect
the sign of the dot product) so they all live on the surface of the unit sphere. Define

γ = min
i
|w∗ · xi|.

This is the minimum distance between any data point and the hyperplane w∗ · x = 0
(see Figure 2.4). Note that we are not given w∗! This is what we are trying to find. In
particular, we will show that the following algorithm finds a consistent weight vector w
after at most 1/γ2 updates.

The Perceptron Algorithm:

1. Start with the all-zeroes weight vector w0 = 0, and initialize t = 0.

2. While there exists a training example xi for which wt is incorrect (i.e., either xi is
positive and yet wt · xi ≤ 0, or xi is negative but wt · xi ≥ 0; if there are multiple
such training examples, choose one arbitrarily) do:

• If xi is positive, let wt+1 = wt + xi.

• If xi is negative, let wt+1 = wt − xi.

• t = t+ 1.

The algorithm should seem at least somewhat reasonable: when we make an update
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Figure 2.4: Positive and negative examples separated by a gap of γ (γ is often called the
“margin” of the data). The vector w∗ is orthogonal to the hyperplane w∗ · x = 0.

on some xi, the new vector wt+1 has a “better” dot product with xi than wt did. In
particular, if xi is positive then wt+1 · xi = (wt + xi) · xi = wt · xi + 1 and similarly if xi

is negative then wt+1 · xi = (wt − xi) · xi = wt · xi − 1. Of course, this doesn’t by itself
prove anything since we might have hurt our dot product with other training examples.
The correctness of the algorithm is given by the following theorem.

Theorem 2.1 The Perceptron algorithm finds a consistent weight vector after at most
1/γ2 updates.

Proof: We’re going to look at the two quantities wt ·w∗ and |wt|, and prove the theorem
via two claims:

Claim 1: wt+1 · w∗ ≥ wt · w∗ + γ. That is, every time we make an update, the dot-
product of our weight vector with the target increases by at least γ.

Proof: if xi was a positive example, then we get wt+1 ·w∗ = (wt + xi) ·w∗ =
wt · w∗ + xi · w∗ ≥ wt · w∗ + γ (by definition of γ). Similarly, if xi was a
negative example, we get (wt − xi) ·w∗ = wt ·w∗ − xi ·w∗ ≥ wt ·w∗ + γ.

Claim 2: |wt+1|2 ≤ |wt|2 + 1. That is, every time we make an update, the length squared
of our weight vector increases by at most 1.

Proof: if xi was a positive example, we get |wt + xi|2 = |wt|2 + 2wt ·xi + |xi|2.
This is less than |wt|2 + 1 because wt · xi is negative (remember, we made a
mistake on xi) and |xi| = 1. The exact same thing holds (flipping signs) if xi

was negative but we predicted positive.

Claim 1 implies that after T updates, wT+1 · w∗ ≥ γT . On the other hand, Claim 2
implies that after T updates, |wT+1| ≤

√
T . Now, all we need to do is use the fact that

wt · w∗ ≤ |wt|, since w∗ is a unit vector. So, this means we must have γT ≤
√
T , and

thus T ≤ 1/γ2.
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Of course, we have not explained why we should have any reason to believe that a vector
w that correctly classifies a sample of data should necessarily do well on new data. For
that and related topics, see Chapter ??.

2.1.2 Structure of this chapter

Our aim in the rest of this chapter is to present the reader with some of the mathematical
foundations to deal with high-dimensional data. There are two important parts of this
foundation. The first is high-dimensional geometry, and the second more modern aspect
is the combination with probability.

We begin by focusing on the unit ball in d dimensions, that is, the set of all points
within distance 1 of the origin. The geometry of high-dimensional space is quite different
from our intuitive understanding of two and three dimensions. For example, we will see
that nearly all the volume of the ball is concentrated near its equator (no matter which
direction we call “north”), and at the same time, nearly all its volume is in a narrow
annulus near its boundary. Moreover, if you consider a ball and its enclosing cube, the
volume of the ball is a vanishingly small fraction of the volume of the cube as the dimen-
sion becomes large.

Following that, we will study a fundamental probability distribution in d dimensions,
the spherical Gaussian. We will use our understanding of the Gaussian distribution to an-
alyze a powerful algorithmic tool for high dimensional problems: random projection and
the Johnson-Lindenstrauss Lemma. For many applications, this technique can be used
to convert a high-dimensional problem into a low-dimensional (and often therefore easier
to solve) version of the same problem. In the process of this analysis, we will derive tail
inequalities which are an important analytical tool for a number of problems we will study
throughout this book. In the context of Gaussians, we will use tail inequalities to analyze
Gaussian mixture models, distributions that often arise in analyzing “big data” problems.

Chapter ?? contains additional background on probability theory.

2.2 The Geometry of High Dimensions

We begin our discussion of high-dimensional geometry by discussing an important
property of high-dimensional objects, that most of their volume is near their surface.

Specifically, consider any object A in Rd. If we shrink it by a factor γ to produce a
new object γA (formally, γA = {γx : x ∈ A}) then volume(γA) = γdvolume(A). We
can see why this is true by partitioning A into infinitesimal cubes of side-length dx, and
noticing that because this fact holds true for a cube, it also holds true for a union of
disjoint cubes. Suppose we now set γ = 1− ε for some small value ε. Using the fact that
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1

1− ε

Annulus of
width 1

d

Figure 2.5: Most of the volume of the d-dimensional ball of radius r is contained in an
annulus of width O(r/d) near the boundary.

1− x ≤ e−x we have that for any object A in Rd,

volume((1− ε)A)

volume(A)
= (1− ε)d ≤ e−εd.

Fixing ε and letting d → ∞, the above quantity rapidly approaches 0. This means that
nearly all of the volume of A must be in points x such that x 6∈ (1− ε)A.

Let S denote the unit ball in d dimensions, that is, the set of points within distance 1
of the origin. An immediate implication of the above is that at least a 1− eεd fraction of
the volume of the unit ball is concentrated in S \ (1− ε)S, namely in a small annulus of
width ε at the boundary. In particular, most of the volume of the d-dimensional unit ball
is contained in an annulus of width O(1/d) near the boundary. If the ball is of radius r,
then similarly the annulus width is O

(
r
d

)
.

2.3 Properties of the Unit Ball

We now focus more specifically on properties of the unit ball in d dimensional space.
We just saw that most of its volume is concentrated in a small annulus of width O(1/d)
near the boundary. We now will show a more subtle fact that additionally most of
its volume is concentrated near its equator (no matter what direction we use to define
“equator”). Specifically, letting x1 (arbitrarily) denote “north”, we will show that most
of the volume of the unit ball has |x1| = O(1/

√
d). Using this fact, we will then show

that two random points in the unit ball are with high probability nearly orthogonal, and
also that the volume of the unit ball goes to 0 as d→∞.

Theorem 2.2 A 1−O(e−γ
2/2) fraction of the volume of the unit ball has |x1| ≤ γ√

d−1 .

Proof: If we consider a slice of the ball at x1 = a of width δ, the volume of this slice
is δ times the (d− 1)-dimensional volume, or “area”, of the cross-section, in the limit as
δ → 0 (so we can think of all cross-sections in the slice as having the same radius). This
cross-section is just a (d − 1)-dimensional ball of radius

√
1− a2. Therefore, applying
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the basic facts about volume discussed in Section 2.2, its (d − 1)-dimensional volume
is exactly (

√
1− a2)d−1Vd−1, where Vd−1 denotes the (d − 1)-dimensional volume of the

(d− 1)-dimensional ball of radius 1. Using the fact that 1− x ≤ e−x we get:

(
√

1− a2)d−1Vd−1 = (1− a2)
d−1
2 Vd−1 ≤ e−(a

2/2)(d−1)Vd−1.

In the other direction, using the fact that (1− 1
d−1)

d−1
2 ≥ 1/e for d ≥ 3, we get:(√

1− ( 1√
d−1)2

)d−1
Vd−1 ≥ e−1Vd−1.

Now, we can make a few observations. First, the cross-sections for x1 ∈ [ −1√
d−1 ,

1√
d−1 ]

have “area” between Vd−1 and e−1Vd−1, so this region has volume at least 2e−1
√
d−1Vd−1. On

the other hand, for γ ≥ 1, the cross-sections for x1 ∈ [ γ√
d−1 ,

γ+1√
d−1 ] have “area” at most

e−γ
2/2Vd−1, so this region has volume at most 1√

d−1e
−γ2/2Vd−1. Furthermore, if we add 1

to γ, this quantity drops by at least a factor 1/e, meaning that if we sum up the volumes
for regions defined by γ, γ + 1, γ + 2, . . . we get a telescoping series whose total volume is
O( 1√

d−1e
−γ2/2Vd−1). Thus, the fraction of volume of the unit ball with |x1| ≥ γ√

d−1 is only

O(e−γ
2/2).

One immediate implication of the above analysis is that if we draw two points at ran-
dom from the unit ball, with high probability they (their vectors) will be nearly orthogonal
to each other. Specifically, from our previous analysis in Section 2.2, we know with high
probability both will have length 1−O(1/d). From our analysis above, we know that if we
define the vector in the direction of the first point as “north”, with high probability the
second will have a projection of only ±O(1/

√
d) in this direction. This implies that with

high probability, the angle between the two vectors will be π/2±O(1/
√
d). In particular,

we have the theorem:

Theorem 2.3 Consider drawing n points z1, z2, . . . , zn at random from the unit ball.
With probability 1−O(1/n) we have both:

1. |zi| ≥ 1− 2 lnn
d

for all i, and

2. |zi · zj| ≤
√
6 lnn√
d−1 for all i 6= j.

Proof: For any fixed i, the bound on |zi| holds with probability at least 1− 1/n2 by the
analysis of Section 2.2 and so it holds for all i with probability at least 1− 1/n. For the
second part, we have

(
n
2

)
pairs i, j, and for each such pair, if we define zi as “north”, the

probability that the projection of zj onto that direction is more than
√
6 lnn√
d−1 (a necessary

condition for the dot-product to be large) is at most O(e−
6 lnn

2 ) = O(n−3) by Theorem
2.2. Thus, this condition is violated with probability at most O(

(
n
2

)
n−3) = O(1/n) as

well.
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Another immediate implication of the above analysis is that as d→∞, the volume of the
ball approaches 0. Specifically, setting γ = 2

√
ln d above we have that at most an O(1/d2)

fraction of the volume of the ball has |x1| ≥ γ√
d−1 . Since this is true for each of the d

dimensions, we have that at least a 1 − O(1
d
) ≥ 1

2
fraction of the volume of the ball lies

in a cube of side-length 2 γ√
d−1 . This cube has volume of the form ( c ln d

d−1 )d/2 for constant
c, and this quantity goes to 0 as d→∞. Since the ball has volume at most twice that of
this cube, its volume goes to 0 as well.

2.4 Generating Points Uniformly at Random from a Ball

How can we generate points uniformly at random from the unit ball? First, let’s
consider generating points uniformly at random on the surface of the unit ball. For the
2-dimensional version of generating points on the circumference of a unit-radius circle,
here is one approach. Independently generate each coordinate uniformly at random from
the interval [−1, 1]. This produces points distributed over a square that is large enough
to completely contain the unit circle. Project each point onto the unit circle. The distri-
bution is not uniform since more points fall on a line from the origin to a vertex of the
square than fall on a line from the origin to the midpoint of an edge of the square due to
the difference in length. To solve this problem, discard all points outside the unit circle
and project the remaining points onto the circle.

In higher dimensions, unfortunately only an exponentially small fraction of the cube
lies inside the unit ball, rapidly making this process impractical. The solution is to gen-
erate a point each of whose coordinates is an independent Gaussian variable. I.e.:

Generate x1, x2, . . . , xd, where the xi are i.i.d. (independent, identically distributed),
each according to the normal (Gaussian) density with mean 0 and variance 1, namely,
1√
2π

exp(−x2/2) on the real line.1 This is called N(0, 1). So the probability density of x
is

p (x) =
1

(2π)
d
2

e−
x21+x

2
2+···+x2d
2

and is spherically symmetric. Normalizing the vector x = (x1, x2, . . . , xd) to a unit vector
- x
|x| - gives a distribution that is uniform over the surface of the sphere. Note that once

the vector is normalized, its coordinates are no longer statistically independent.

Now to generate a point y uniformly over the ball (surface and interior), we have to
scale the point x

|x| generated on the surface by a scalar ρ ∈ [0, 1]. What is the distribution

1One might naturally ask: “how do you generate a random number from a 1-dimensional Gaussian?”
A general method to generate a number from any distribution given its CDF P is to first select a uniform
random number u ∈ [0, 1] and then choose x = P−1(u); that is because the probability this generates

a number between x and x + δ is P (x + δ) − P (x) =
∫ x+δ
x

p(x′)dx′ as desired. For the 2-dimensional
Gaussian, one can generate a point in polar coordinates by choosing angle θ uniform in [0, 2π] and radius
r =

√
−2 ln(u) where u is uniform random in [0, 1]. This is called the Box-Muller transform.
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of ρ ? It is certainly not uniform, even in 2 dimensions. Indeed, the density of ρ at r is
proportional to r for d = 2. Similarly, for d = 3, it is proportional to r2. You may want
to consult the figure (??). By similar reasoning, it is easy to see that in d dimensions, the

density of ρ at distance r is proportional to rd−1. Solving
∫ r=1

r=0
crd−1dr = 1 (the integral

of density must equal 1) we see we should set c = d. Another way to see this formally
is that we know the volume of the radius-r ball in d dimensions is rdVd, where Vd is the
volume of the unit ball. The density at radius r is exactly d

dr
(rdVd) = drd−1Vd. So, pick ρ

with density (of ρ = r) equal to drd−1 over [0, 1].
Now we have succeeded in generating a point

y = ρ
x

|x|

uniformly at random from the unit ball S by using the very convenient spherical Gaussian
distribution. In the next sections, we will analyze the spherical Gaussian in more detail.

2.5 The Law of Large Numbers

If we draw points at random from the d-dimensional spherical Gaussian for large d,
we will find that they are all essentially the same distance apart. The reason is that
if one averages n independent samples x1, x2, . . . , xn of a random variable x of bounded
variance, the result will be close to the expected value of x. In our case, we can think of
xi as representing the squared distance between two points in coordinate i, and n = d, so
that the sum of the xi is the overall squared distance between the two points. Later in
Theorem 2.11 we will give tight concentration bounds of this form. For now, we will give
a less tight but more general bound called the Law of Large Numbers. Specifically, the
Law of Large Numbers states:

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ > ε

)
≤ σ2

nε2
. (2.1)

Here the σ2 in the numerator is the variance of x. The larger the variance of the random
variable, the greater the probability that the error will exceed ε. The number of points n
is in the denominator since the more values that are averaged, the smaller the probability
that the difference will exceed ε. Similarly the larger ε is, the smaller the probability that
the difference will exceed ε and hence ε is in the denominator. Notice that squaring ε
makes the fraction a dimensionalless quantity.

To prove the law of large numbers we use two inequalities. The first is Markov’s
inequality. One can bound the probability that a nonnegative random variable exceeds a
by the expected value of the variable divided by a.

Theorem 2.4 (Markov’s inequality) Let x be a nonnegative random variable. Then
for a > 0,

Prob(x ≥ a) ≤ E(x)

a
.
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Proof: The proof is easiest to see if multiply both sides of the inequality by a, producing
the statement E(x) ≥ a · Prob(x ≥ a). This now follows directly from the definition of
expectation. Specifically, for a continuous random variable x with density p, we have:

E (x) =

∞∫
0

xp(x)dx ≥
∞∫
a

xp(x)dx ≥ a

∞∫
a

p(x)dx = aProb(x ≥ a)

For a discrete nonnegative random variable, the same proof applies:

E(x) =
∑
v≥0

vProb(x = v) ≥ aProb(x ≥ a).

Corollary 2.5 Prob (x ≥ cE(x)) ≤ 1
c

Markov’s inequality bounds the tail of a distribution using only information about the
mean. A tighter bound can be obtained by also using the variance.

Theorem 2.6 (Chebyshev’s inequality) Let x be a random variable with mean m and
variance σ2. Then

Prob(|x−m| ≥ aσ) ≤ 1

a2
.

Proof: Prob(|x−m| ≥ aσ) = Prob
(
(x−m)2 ≥ a2σ2

)
. Note that (x−m)2 is a nonneg-

ative random variable, so Markov’s inequality can be applied giving:

Prob
(
(x−m)2 ≥ a2σ2

)
≤
E
(
(x−m)2

)
a2σ2

=
σ2

a2σ2
=

1

a2
.

Thus, Prob (|x−m| ≥ aσ) ≤ 1
a2

.

The law of large numbers follows from Chebyshev’s inequality. Recall that E(x+y) =
E(x) +E(y), σ2(cx) = c2σ2(x), σ2(x−m) = σ2(x), and if x and y are independent, then
E(xy) = E(x)E(y) and σ2(x + y) = σ2(x) + σ2(y). To prove σ2(x + y) = σ2(x) + σ2(y)
when x and y are independent, since σ2(x −m) = σ2(x), one can assume E(x) = 0 and
E(y) = 0. Thus,

σ2(x+ y) = E
(
(x+ y)2

)
= E(x2) + E(y2) + 2E(xy)

= E(x2) + E(y2) + 2E(x)E(y) = σ2(x) + σ2(y).

Replacing E(xy) by E(x)E(y) required independence.

Theorem 2.7 (Law of large numbers) Let x1, x2, . . . , xn be n samples of a random
variable x. Then

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ > ε

)
≤ σ2

nε2
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Proof: By Chebychev’s inequality

Prob

(∣∣∣∣x1 + x2 + · · ·+ xn
n

− E(x)

∣∣∣∣ > ε

)
≤
σ2
(
x1+x2+···+xn

n

)
ε2

≤ 1

n2ε2
σ2(x1 + x2 + · · ·+ xn)

≤ 1

n2ε2
(
σ2(x1) + σ2(x2) + · · ·+ σ2(xn)

)
≤ σ2(x)

nε2
.

The law of large numbers is quite general. In the sections below we will look at tighter
concentration bounds for spherical Gaussians and sums of 0-1 valued random variables.

2.6 Gaussians in High Dimension

A 1-dimensional Gaussian has its mass close to the origin. However, as the dimension
is increased something different happens. The d-dimensional spherical Gaussian with zero
mean and variance σ2 in each coordinate has density function

p(x) =
1

(2π)d/2 σd
exp

(
− |x|

2

2σ2

)
.

The value of the density is maximum at the origin, but there is very little volume there.
When σ = 1, integrating the probability density over a unit ball centered at the origin
yields nearly zero mass since the volume of such a ball is negligible. In fact, one needs to
increase the radius of the ball to

√
d before there is a significant nonzero volume and hence

a nonzero probability mass. If one increases the radius beyond
√
d, the integral ceases to

increase even though the volume increases since the probability density is dropping off at
a much higher rate. The following theorem states that the mass is concentrated in a thin
annulus of width O(1) at radius

√
d. It will be proved in Section (2.9). But we will first

use it in the next section. First, note that

E(|x|2) =
d∑
i=1

E(x2i ) = dE(x21) = d.

So the mean squared distance of a point from the center is d. We call the square root of
the mean squared distance, namely

√
d here, the radius of the Gaussian.

Theorem 2.8 Gaussian Annulus Theorem For a d−dimensional unit variance spher-
ical Gaussian, for any positive real number β ≤

√
d, all but at most 3e−cβ

2
of the mass

lies within the annulus
√
d− β ≤ r ≤

√
d+ β, where, c is a fixed positive constant.

12
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Figure 2.6: Most of the probability mass of d dimensional Gaussian of radius r is contained
in an annulus of width O(r/

√
d).

2.7 Random Projection and Johnson-Lindenstrauss Lemma

One of the most frequently used subroutines for high dimensional data is the Nearest
Neighbor Search (NNS) problem. In NNS, we are given a database of n points in Rd,
where, usually, n, d are large. The database can be preprocessed and stored in an effi-
cient data structure. Thereafter, we are presented “query” points in Rd and are to find
the nearest or approximately nearest database point to the query point. Since the num-
ber of queries is often large, query time (time to answer a single query) should be very
small (ideally a small function of log n, log d), whereas preprocessing time could be larger
(a polynomial function of n, d). For this and other problems, dimension reduction,
where, one projects the database points to a k dimensional space with k � d (usually
dependent on log d) can be very useful so long as the relative distances between points
are approximately preserved. We will see using the Gaussian Annulus theorem that such
a projection indeed exists and is simple.

The projection f : Rd → Rk that we will examine (in fact, many related projections
are known to work as well) is the following. Pick k vectors u1,u2, . . . ,uk, independently
from the Gaussian distribution 1

(2π)d/2
exp(−|x|2/2). We then define for any vector v, the

projection f(v) by:
f(v) = (u1 · v,u2 · v, . . . ,uk · v).

So, f(v) is just a vector of dot products of v with the ui. We will show that |f(v)| ≈√
k|v|, so if we have to find the distance |v1 − v2| between two vectors v1,v2 in Rd, it

will suffice instead to compute |f(v1)− f(v2)| = |f(v1 − v2)| in the k dimensional space
(since the factor of

√
k is known and we can just divide by it).

Theorem 2.9 (The Random Projection Theorem) Let v be a fixed vector in Rd

and let f be defined as above. Then, for ε ∈ (0, 1),

Prob
(∣∣∣|f(v)| −

√
k|v|

∣∣∣ ≥ ε
√
k|v|

)
≤ 3e−ckε

2

,

where the probability is taken over the random draws of vectors ui used to construct f .

Proof: By scaling both sides by |v|, we may assume that |v| = 1. The sum of independent
normally distributed real variables is also normally distributed; the means and variances
just sum up. Since ui · v =

∑d
j=1 uijvj, we see that the random variable ui · v has

Gaussian density with mean 0 and variance equal to
∑d

j=1 v
2
j = |v|2 = 1. Further,

u1 ·v,u2 ·v, . . . ,uk ·v are independent. So the current theorem follows from the Gaussian
annulus theorem (2.8).

13



The random projection theorem establishes that the probability of the length of the
projection of a single vector differing significantly from its expected value is exponentially
small in k, the dimension of the target subspace. By a union bound, the probability that
any of O(n2) pairwise differences |vi−vj| among n vectors v1, . . . ,vn differs significantly
from their expected values is small, provided k ≥ 3

cε2
lnn. Thus, the projection to a

random subspace preserves all relative pairwise distances between points in a set of n
points with high probability. This is the content of the Johnson-Lindenstrauss Lemma.

Theorem 2.10 (Johnson-Lindenstrauss Lemma) For any 0 < ε < 1 and any integer
n, let k ≥ 3

cε2
lnn for c as in Theorem 2.8. For any set P of n points in Rd, the random

projection f f : Rd → Rk defined above has the property that for all vi, vj in P , with
probability at least 1− (1.5/n),

(1− ε)
√
k |vi − vj| ≤ |f(vi)− f(vj)| ≤ (1 + ε)

√
k |vi − vj| .

Proof: Applying the random projection theorem (Theorem 2.9), for any fixed vi and vj,
the probability that |f(vi)− f(vj)| = |f(vi − vj)| is outside the range[

(1− ε)
√
k|u− v|, (1 + ε)

√
k|u− v|

]
is at most 3e−ckε

2 ≤ 3/n3 for k ≥ 3 lnn
cε2

. Since there are
(
n
2

)
< n2/2 pairs, by the union

bound, the probability that some pair has a large distortion is less than 3
2n

.

Remark: It is important to note that the conclusion of Theorem 2.10 asserts for all vi

and vj in P , not just for most of them. The weaker assertion for most vi and vj is
typically less useful, since our algorithm (for a problem such as nearest-neighbor search)
might return one of the bad points. A remarkable aspect of the theorem is that the
number of dimensions in the projection is only dependent logarithmically on n. Since k
is often much less than d, this is called a dimension reduction technique.

For the nearest neighbor problem, if the database has n1 points and n2 queries are
expected during the lifetime, take n = n1 + n2 and project the database to a random
k-dimensional space, for k as in Theorem 2.10. On receiving a query, project the query
to the same subspace and compute nearby database points. The Johnson Lindenstrauss
theorem says that with high probability this will yield the right answer whatever the
query. Note that the exponentially small in k probability was useful here in making k
only dependent on lnn, rather than n.

2.8 Bounds on Tail Probability

Recall that Markov’s inequality bounds the tail probability of a nonnegative random
variable x based only on its expectation. For a > 0,

Prob(x ≥ a) ≤ E(x)

a
.

14



As a grows, the bound drops off as 1/a. Given the second moment of x, Chebyshev’s
inequality, which does not assume x is a nonnegative random variable, gives a tail bound
falling off as 1/a2:

Prob(|x− E(x)| ≥ a) ≤
E
((
x− E(x)

)2)
a2

.

Higher moments yield bounds by applying either of these two theorems. For example,
if r is a nonnegative even integer, then xr is a nonnegative random variable even if x takes
on negative values. Applying Markov’s inequality to xr,

Prob(|x| ≥ a) = Prob(xr ≥ ar) ≤ E(xr)

ar
,

a bound that falls off as 1/ar. The larger the r, the greater the rate of fall, but a bound
on E(xr) is needed to apply this technique.

For a random variable x that is the sum of a large number of independent random
variables, x1, x2, . . . , xn, one can derive bounds on E(xr) for high even r. There are many
situations where the sum of a large number of independent random variables arises. For
example, xi may be the amount of a good that the ith consumer buys, the length of the ith

message sent over a network, or the indicator random variable of whether the ith record
in a large database has a certain property. Each xi is modeled by a simple probability
distribution. Gaussian, exponential (probability density at any t > 0 is e−t), or binomial
distributions are typically used, in fact, respectively in the three examples here. If the xi
have 0-1 distributions, there are a number of theorems called Chernoff bounds, bounding
the tails of x = x1 + x2 + · · · + xn, typically proved by the so-called moment-generating
function method (see Section ?? of the appendix). But exponential and Gaussian random
variables are not bounded and these methods do not apply. However, good bounds on
the moments of these two distributions are known. Indeed, for any integer s > 0, the sth

moment for the unit variance Gaussian and the exponential are both at most s!.

Given bounds on the moments of individual xi the following theorem proves moment
bounds on their sum. We use this theorem to derive tail bounds not only for sums of 0-1
random variables, but also Gaussians, exponentials, Poisson, etc.

The Central Limit Theorem for independent, identically distributed random vari-
ables x1, x2, · · · , xn with zero mean and Var(xi) = σ2 states as n→∞ the distribution of
x = (x1 + x2 + · · ·+ xn)/

√
n tends to the Gaussian density with zero mean and variance

σ2. Loosely, this says that in the limit, the tails of x = (x1 + x2 + · · · + xn)/
√
n are

bounded by that of a Gaussian with variance σ2. But this theorem is only in the limit,
whereas we want (and will prove) a bound that applies for all n.

In the following theorem, x is the sum of n independent, not necessarily identically
distributed, random variables x1, x2, . . . , xn, each of zero mean and variance at most σ2.

15



By the central limit theorem, in the limit the probability density of x goes to that of
the Gaussian with variance at most nσ2. In a limit sense, this implies an upper bound
of ce−a

2/(2nσ2) for the tail probability Prob(|x| > a) for some constant c. The following
theorem assumes bounds on higher moments, but asserts a quantitative upper bound of
3e−a

2/(12nσ2) on the tail probability, not just in the limit, but for every n. We will apply
this theorem to get tail bounds on sums of Gaussian, binomial, and power law distributed
random variables.

Theorem 2.11 Let x = x1 + x2 + · · · + xn, where x1, x2, . . . , xn are mutually inde-
pendent random variables with zero mean and variance at most σ2. Assume for s =
3, 4, . . . , b(a2/4nσ2)c, |E(xsi )| ≤ σ2s!, then for 0 ≤ a ≤

√
2nσ2,

Prob (|x| ≥ a) ≤ 3e−a
2/(12nσ2).

Proof: We first prove an upper bound on E(xr) for any even positive integer r ≤ s and
then use Markov’s inequality as discussed earlier. Expand (x1 + x2 + · · ·+ xn)r.

(x1 + x2 + · · ·+ xn)r =
∑(

r

r1, r2, . . . , rn

)
xr11 x

r2
2 · · · xrnn

=
∑ r!

r1!r2! · · · rn!
xr11 x

r2
2 · · ·xrnn

where the ri range over all nonnegative integers summing to r. By independence

E(xr) =
∑ r!

r1!r2! · · · rn!
E(xr11 )E(xr22 ) · · ·E(xrnn ).

If in a term, any ri = 1, the term is zero since E(xi) = 0. Assume henceforth that
(r1, r2, . . . , rn) runs over sets of nonzero ri summing to r where each nonzero ri is at least
two. Let

J = {(r1, r2, . . . , rn) : ri ∈ {0, 2, 3, . . .} ;
n∑
i=1

ri = r}.

Since |E(xrii )| ≤ σ2ri!,

E(xr) ≤ r!
∑

(r1,r2,...,rn)∈J

σ2( number of nonzero ri in set).

Collect terms of the summation with t nonzero ri for t = 1, 2, . . . , r/2. Let

Jt = {(r1, r2, . . . , rn) ∈ J : number of non-zero ri = t}.

So,

E(xr) = r!

r/2∑
t=1

|Jt|σ2t.
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We now bound |Jt|. There are
(
n
t

)
subsets of {1, 2, . . . , n} of cardinality t. Once a subset

is fixed as the set of t values of i with nonzero ri, set each of the ri ≥ 2. That is, allocate
two to each of the ri and then allocate the remaining r − 2t to the t ri arbitrarily. The
number of such allocations is just

(
r−2t+t−1

t−1

)
=
(
r−t−1
t−1

)
. So,

|Jt| ≤
(
n

t

)(
r − t− 1

t− 1

)
E(xr) ≤ r!

r/2∑
t=1

(
n

t

)(
r − t− 1

t− 1

)
σ2t ≤ r!

∑
t

(nσ2)t

t!
2r−t−1.

Let h(t) = (nσ2)t

t!
2r−t−1. In the hypotheses of the theorem a ≤

√
2 nσ2 and s ≤ a2

4nσ2 . Thus,
r is at most nσ2/2. For t ≤ r/2, increasing t by one, increases h(t) by at least nσ2/(2t),
which is at least two. This gives

E(xr) = r!

r/2∑
t=1

h(t) ≤ r!h(r/2)(1 +
1

2
+

1

4
+ · · · ) ≤ r!

(r/2)!
2r/2(nσ2)r/2.

Applying Markov inequality,

Prob(|x| > a) = Prob(|x|r > ar) ≤ r!(nσ2)r/22r/2

(r/2)!ar
≤
(
r

2nσ2

a2

)r/2
.

The bound applies for any r ≤ s. Take r to be the largest even integer less than or
equal to a2/(6nσ2). [By Calculus, we see that the function f(x) = (cx)x/2 is minimized
at x = 1/ec (just differentiate ln(f(x))). So, r = a2/(2enσ2) minimizes the upper bound.
Our choice here replaces 2e by 6.] The tail probability is at most e−r/2, which is at most
e · e−a2/(12nσ2) ≤ 3 · e−a2/(12nσ2), proving the theorem.

2.9 Applications of the tail bound

Calculation of width of the Gaussian annulus

Let (y1, y2, . . . , yd) be a unit variance Gaussian centered at the origin. We argue that
the mass of the Gaussian is in a narrow annulus of width O(1) of a ball of radius approx-
imately

√
d. It is easier to deal with squared distance to the origin rather than distance.

Thus, we ask what is the probability that |y21 + y22 + · · · + y2d − d| ≥ β? Let xi = y2i − 1
and change the question to what is the probability that |x1 + x2 + · · ·+ xd| ≥ β to which
we can apply Theorem 2.11.

Theorem 2.11 requires bounds on the moments of the xi. For |yi| ≤ 1, |xi|s ≤ 1 and
for |yi| ≥ 1, |xi|s ≤ |yi|2s. Thus

|E(xsi )| = E(|xi|s) ≤ E(1 + y2si ) = 1 + E(y2si )

= 1 +

√
2

π

∫ ∞
0

y2se−y
2/2dy
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Using the substitution y2 = 2z,

|E(xsi )| = 1 +
1√
π

∫ ∞
0

2szs−(1/2)e−zdz

≤ 2ss!.

The last inequality is from the Gamma integral.
Exi = 0 and so Var(xi) = E(x2i ) ≤ 222 = 8. But to make |E(xsi )| ≤ 8s! as required in
theorem (2.11), we use wi = xi/2. Then, Var(wi) = 2 and |E(wsi )| ≤ 2s!.

Proof: (of Theorem (2.8)) Let r be the distance to a point generated by the Gaussian.
If |r −

√
d| ≥ β, then since |r +

√
d| ≥

√
d, |r2 − d| = |r −

√
d||r +

√
d| ≥ β

√
d. Thus

|y21+y22+· · ·+y2d−d| ≥ β
√
d and hence |x1+x2+· · ·+xd| ≥ β

√
d or |w1+w2+· · ·+wd| ≥ β

√
d

2
.

Applying Theorem 2.11 where σ2 = 2 and n = d, this occurs with probability less than

or equal to 3e−
β2

200 .

Chernoff Bounds

Chernoff bounds deal with sums of Bernoulli random variables. Here we apply Theo-
rem 2.11 to derive similar bounds. For this direct application, we will require p < 1−1/

√
2.

Theorem 2.12 Suppose y1, y2, . . . , yn are independent 0-1 random variables with E(yi) =
p for all i, where p < 1− 1/

√
2. Let y = y1 + y2 + · · ·+ yn. Then for any c ∈ [0, 1],

Prob (|y − E(y)| ≥ cnp) ≤ 3e−npc
2/8.

Proof: Let xi = yi − p. Then, E(xi) = 0 and E(x2i ) = E(yi − p)2 = p(1− p). For s ≥ 3,

|E(xsi )| = |E(yi − p)s|
= |p(1− p)s + (1− p)(0− p)s|
=
∣∣p(1− p) ((1− p)s−1 + ps−1

)∣∣
≤ p(1− p).

Apply Theorem 2.11 with a = cnp. Noting that 1 − p > 1/
√

2 so a <
√

2 np(1 − p),
completes the proof.

The appendix contains a different proof that uses a standard method based on moment-
generating functions, which gives a better constant in the exponent.

Power Law Distributions
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Figure 2.7: Zipf’s Law: Number of words versus frequency.

The power law distribution of order k where k is a positive integer is

f(x) =
k − 1

xk
for x ≥ 1.

The power law is the hypothesized distribution in many practical settings. For example, if
we plot the how many words occur occur with a certain frequency in a document (against
frequency), the so-called Zipf’s law postulates that the plot obeys a power law.

If a random variable x has this distribution for k ≥ 4, then

µ = E(x) =
k − 1

k − 2
and Var(x) =

k − 1

(k − 2)2(k − 3)
.

Theorem 2.13 Suppose y obeys a power law of order k ≥ 4 and x1, x2, . . . , xn are
independent random variables, each with the same distribution as y − E(y). Let x =
x1 + x2 + · · ·+ xn. For any nonnegative a ≤ 1

10

√
n
k
,

Prob (|x| ≥ a) ≤ e−
a2

8var(x) .

Proof: For integer s, the sth moment of xi, namely, E(xsi ), exists if and only if s ≤ k−2.
For s ≤ k − 2,

E(xsi ) = (k − 1)

∫ ∞
1

(y − µ)s

yk
dy

Using the substitution of variable z = µ/y

(y − µ)s

yk
= ys−k(1− z)s =

zk−s

µk−s
(1− z)s

As y goes from 1 to ∞, z goes from µ to 0, and dz = − µ
y2
dy. Thus

E(xsi ) =(k − 1)

∫ ∞
1

(y − µ)s

yk
dy

=
k − 1

µk−s−1

∫ 1

0

(1− z)szk−s−2dz +
k − 1

µk−s−1

∫ µ

1

(1− z)szk−s−2dz.

The first integral is just the standard integral of the beta function and its value is s!(k−2−s)!
(k−1)! .

To bound the second integral, note that for z ∈ [1, µ], |z − 1| ≤ 1
k−2 and

zk−s−2 ≤
(
1 +

(
1/(k − 2)

))k−s−2 ≤ e(k−s−2)/(k−2) ≤ e.
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Apply Theorem 2.11 requires bounding |E(xsi )| for 3 ≤ s ≤
⌊

a2

4nVar(xi)

⌋
. Since a ≤ 1

10

√
n
k
;

it follows that⌊
a2

4nVar(xi)

⌋
≤ n

100k

1

4n

(k − 2)2(k − 3)

k − 1
≤ (k − 2)2(k − 3)

k(k − 1)
≤ k − 2.

So it suffices to prove that |E(xsi )| ≤ s!Var(x) for 3 ≤ s ≤ . . . , k − 2. If k = 4, s can go
only up to 2 and there is nothing to prove. So assume k ≥ 5. Since µ > 1,

|E(xsi )| ≤
(k − 1)s!(k − 2− s)!

(k − 1)!
+

e(k − 1)

(k − 2)s+1
≤ s!Var(y)

(
1

k − 4
+
e

3!

)
≤ s!Var(x).

Now, the theorem follows from Theorem 2.11.

2.10 Separating Gaussians

Mixtures of Gaussians are often used to model heterogeneous data coming from multiple
sources. For example, suppose we are recording the heights of individuals age 20-30 in a
city. We know that on average, men tend to be taller than women, so a natural model
would be a Gaussian mixture model p(x) = w1p1(x) +w2p2(x), where p1(x) is a Gaussian
density representing the typical heights of women, p2(x) is a Gaussian density represent-
ing the typical heights of men, and w1 and w2 are the mixture weights representing the
proportion of women and men in the city. The parameter estimation problem for a mixture
model is the problem: given access to samples from the overall density p (e.g., heights of
people in the city, but without being told whether the person with that height is male
or female), reconstruct the parameters for the distribution (e.g., good approximations to
the means and variances of p1 and p2, as well as the mixture weights).

Now of course there are taller women and shorter men, so even if one solved the param-
eter estimation problem for heights perfectly, given a data point (a height) one couldn’t
necessarily tell which population it came from (male or female). In this section, we will
look at a problem that is in some ways easier and some ways harder than this problem of
heights. It will be harder in that we will be interested in a mixture of two Gaussians in
high-dimensions (as opposed to the d = 1 case of heights). But it will be easier in that we
will assume the means are quite well-separated compared to the variances. Specifically,
our focus will be on a mixture of two spherical unit-variance Gaussians whose means are
separated by a distance Ω(d1/4). We will show that at this level of separation, we can with
high probability in fact uniquely determine which Gaussian each data point came from.
The algorithm to do so will actually be quite simple. Calculate the distance between
all pairs of points. Points whose distance apart is smaller are from the same Gaussian,
whereas points whose distance is larger are from different Gaussians. Later, we will see
that with more sophisticated algorithms, even a separation of Ω(1) suffices.

Consider two spherical unit-variance Gaussians. From Theorem 2.11, most of the
probability mass of each Gaussian lies on an annulus of width O(1) at radius

√
d− 1. Also
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Figure 2.8: Two randomly chosen points in high dimension are almost surely nearly
orthogonal.

e−|x|
2/2 =

∏
i e
−x2i /2 and almost all of the mass is within the slab { x | − c ≤ x1 ≤ c }, for

c ∈ O(1). Pick a point x from the first Gaussian. After picking x, rotate the coordinate
system to make the first axis point towards x. Independently pick a second point y also
from the first Gaussian. The fact that almost all of the mass of the Gaussian is within
the slab {x | − c ≤ x1 ≤ c, c ∈ O(1)} at the equator implies that y’s component along
x’s direction is O(1) with high probability. Thus, y is nearly perpendicular to x. So,
|x − y| ≈

√
|x|2 + |y|2. See Figure 2.8. More precisely, since the coordinate system

has been rotated so that x is at the North Pole, x = (
√
d ± O(1), 0, . . . , 0). Since y is

almost on the equator, further rotate the coordinate system so that the component of
y that is perpendicular to the axis of the North Pole is in the second coordinate. Then
y = (O(1),

√
d±O(1), 0, . . . , 0). Thus,

(x− y)2 = d±O(
√
d) + d±O(

√
d) = 2d±O(

√
d)

and |x− y| =
√

2d±O(1).

Given two spherical unit variance Gaussians with centers p and q separated by a
distance δ, the distance between a randomly chosen point x from the first Gaussian and
a randomly chosen point y from the second is close to

√
δ2 + 2d, since x− p,p− q, and

q−y are nearly mutually perpendicular. Pick x and rotate the coordinate system so that
x is at the North Pole. Let z be the North Pole of the ball approximating the second
Gaussian. Now pick y. Most of the mass of the second Gaussian is within O(1) of the
equator perpendicular to q−z. Also, most of the mass of each Gaussian is within distance
O(1) of the respective equators perpendicular to the line q− p. See Figure 2.9. Thus,

|x− y|2 ≈ δ2 + |z− q|2 + |q− y|2

= δ2 + 2d±O(
√
d)).
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Figure 2.9: Distance between a pair of random points from two different unit balls ap-
proximating the annuli of two Gaussians.

To ensure that the distance between two points picked from the same Gaussian are
closer to each other than two points picked from different Gaussians requires that the
upper limit of the distance between a pair of points from the same Gaussian is at most
the lower limit of distance between points from different Gaussians. This requires that√

2d+O(1) ≤
√

2d+ δ2 −O(1) or 2d+O(
√
d) ≤ 2d+ δ2, which holds when δ ∈ Ω(d1/4).

Thus, mixtures of spherical Gaussians can be separated, provided their centers are sepa-
rated by more than d

1
4 . One can actually separate Gaussians where the centers are much

closer. Chapter 4 contains an algorithm that separates a mixture of k spherical Gaussians
whose centers are much closer.

Algorithm for separating points from two Gaussians

Calculate all pairwise distances between points. The cluster of smallest
pairwise distances must come from a single Gaussian. Remove these
points. The remaining points come from the second Gaussian.

Fitting a single spherical Gaussian to data

Given a set of sample points, x1,x2, . . . ,xn, in a d-dimensional space, we wish to find
the spherical Gaussian that best fits the points. Let F be the unknown Gaussian with
mean µ and variance σ2 in each direction. The probability density for picking these points
when sampling according to F is given by

c exp

(
− (x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

2σ2

)
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where the normalizing constant c is the reciprocal of

[∫
e−
|x−µ|2

2σ2 dx

]n
. In integrating from

−∞ to ∞, one could shift the origin to µ and thus c is

[∫
e−
|x|2

2σ2 dx

]−n
= 1

(2π)
n
2

and is

independent of µ.

The Maximum Likelihood Estimator (MLE) of F, given the samples x1,x2, . . . ,xn, is
the F that maximizes the above probability density.

Lemma 2.14 Let {x1,x2, . . . ,xn} be a set of n points in d-space. Then (x1 − µ)2 +
(x2 − µ)2+· · ·+(xn − µ)2 is minimized when µ is the centroid of the points x1,x2, . . . ,xn,
namely µ = 1

n
(x1 + x2 + · · ·+ xn).

Proof: Setting the gradient of (x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2 with respect µ to
zero yields

−2 (x1 − µ)− 2 (x2 − µ)− · · · − 2 (xn − µ) = 0.

Solving for µ gives µ = 1
n
(x1 + x2 + · · ·+ xn).

To determine the maximum likelihood estimate of σ2 for F , set µ to the true centroid.
Next, we show that σ is set to the standard deviation of the sample. Substitute ν = 1

2σ2

and a = (x1 − µ)2 + (x2 − µ)2 + · · · + (xn − µ)2 into the formula for the probability of
picking the points x1,x2, . . . ,xn. This gives

e−aν[∫
x

e−x2νdx

]n .

Now, a is fixed and ν is to be determined. Taking logs, the expression to maximize is

−aν − n ln

∫
x

e−νx
2

dx

 .
To find the maximum, differentiate with respect to ν, set the derivative to zero, and solve
for σ. The derivative is

−a+ n

∫
x

|x|2e−νx2dx∫
x

e−νx2dx
.

Setting y = |
√
νx| in the derivative, yields

−a+
n

ν

∫
y

y2e−y
2
dy∫

y

e−y2dy
.
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Since the ratio of the two integrals is the expected distance squared of a d-dimensional
spherical Gaussian of standard deviation 1√

2
to its center, and this is known to be d

2
, we

get −a + nd
2ν
. Substituting σ2 for 1

2ν
gives −a + ndσ2. Setting −a + ndσ2 = 0 shows that

the maximum occurs when σ =
√
a√
nd

. Note that this quantity is the square root of the
average coordinate distance squared of the samples to their mean, which is the standard
deviation of the sample. Thus, we get the following lemma.

Lemma 2.15 The maximum likelihood spherical Gaussian for a set of samples is the
one with center equal to the sample mean and standard deviation equal to the standard
deviation of the sample from the true mean.

Let x1,x2, . . . ,xn be a sample of points generated by a Gaussian probability distri-
bution. µ = 1

n
(x1 + x2 + · · ·+ xn) is an unbiased estimator of the expected value of

the distribution. However, if in estimating the variance from the sample set, we use the
estimate of the expected value rather than the true expected value, we will not get an
unbiased estimate of the variance, since the sample mean is not independent of the sam-
ple set. One should use µ = 1

n−1(x1 + x2 + · · ·+ xn) when estimating the variance. See
Section ?? of the appendix.

2.11 Bibliographic Notes

The word vector model was introduced by Salton [SWY75]. Taylor series remainder
material can be found in Whittaker and Watson 1990, pp. 95-96 and Section ?? of the
appendix. There is vast literature on the Gaussian distribution, its properties, drawing
samples according to it, etc. The reader can choose the level and depth according to
his/her background. For Chernoff bounds and their applications, see [MU05] or [MR95b].
The proof here and the application to heavy-tailed distributions is simplified from [Kan09].
The original proof of the random projection theorem by Johnson and Lindenstrauss was
complicated. Several authors used Gaussians to simplify the proof. See [Vem04] for details
and applications of the theorem. The proof here is due to Dasgupta and Gupta [DG99].
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2.12 Exercises

Exercise 2.1

1. Let x and y be independent random variables with uniform distribution in [0, 1].
What is the expected value E(x), E(x2), E(x− y), E(xy), and E((x− y)2)?

2. Let x and y be independent random variables with uniform distribution in [−1
2
, 1
2
].

What is the expected value E(x), E(x2), E(x− y), E(xy), and E((x− y)2)?

3. What is the expected squared distance between two points generated at random inside
a unit d-dimensional cube centered at the origin?

4. Randomly generate a number of points inside a d-dimensional unit cube centered
at the origin and plot distance between and the angle between the vectors from the
origin to the points for all pairs of points.

Exercise 2.2 Consider two random vectors in {0, 1}d for large d. The angle between
them will be concentrated around what value?

Exercise 2.3 The distance of a point to the center of a ball in d-dimensions is likely
to be between 1 − c

d
and 1. Additionally, the first coordinate of such a point is likely to

be between − c√
d

and c√
d
. Justify the role of d in these statements. Why is the d in the

denominator linear in one case and in the other appears as a square root.

Exercise 2.4 Show that Markov’s inequality is tight by showing the following:

1. For each of a = 2, 3, and 4 give a probability distribution for a nonnegative random
variable x where Prob

(
x ≥ aE(x)

)
= 1

a
.

2. For arbitrary a ≥ 1 give a probability distribution for a nonnegative random variable
x where Prob

(
x ≥ aE(x)

)
= 1

a
.

Exercise 2.5 In what sense is Chebyshev’s inequality tight?

Exercise 2.6 Consider the probability function p(x) = c 1
x4
, x ≥ 1, and generate 100

random samples. How close is the average of the samples to the expected value of x?

Exercise 2.7 Consider the portion of the surface area of a unit radius, 3-dimensional
ball with center at the origin that lies within a circular cone whose vertex is at the origin.
What is the formula for the incremental unit of area when using polar coordinates to
integrate the portion of the surface area of the ball that is lying inside the circular cone?
What is the formula for the integral? What is the value of the integral if the angle of the
cone is 36◦? The angle of the cone is measured from the axis of the cone to a ray on the
surface of the cone.
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Exercise 2.8 For what value of d does the volume, V (d), of a d-dimensional unit ball
take on its maximum?
Hint: Consider the ratio V (d)

V (d−1) .

Exercise 2.9 Write a recurrence relation for V (d) in terms of V (d− 1) by integrating
using an incremental unit that is a disk of thickness dr.

Exercise 2.10 How does the volume of a ball of radius two behave as the dimension of the
space increases? What if the radius was larger than two but a constant independent of d?
What function of d would the radius need to be for a ball of radius r to have approximately
constant volume as the dimension increases?

Exercise 2.11 A 3-dimensional cube has vertices, edges, and faces. In a d-dimensional
cube, these components are called faces. A vertex is a 0-dimensional face, an edge a 1-
dimensional face, etc. For 0 ≤ i ≤ d, how many i-dimensional faces does a d-dimensional
hyper cube have? What is the total number of faces of all dimensions? The d-dimensional
face is the cube itself which you can include in your count.

Exercise 2.12 For i ≤ i ≤ d, how many i-dimensional faces does a d-dimensional tetra-
hedron have?

Exercise 2.13 Consider a unit radius, circular cylinder in 3-dimensions of height one.
The top of the cylinder could be an horizontal plane or half of a circular ball. Consider
these two possibilities for a unit radius, circular cylinder in 4-dimensions. In 4-dimensions
the horizontal plane is 3-dimensional and the half circular ball is 4-dimensional.In each
of the two cases, what is the surface area of the top face of the cylinder? You can use
V (d) for the volume of a unit radius, d-dimension ball and A(d) for the surface area of
a unit radius, d-dimensional ball. An infinite length, unit radius, circular cylinder in 4-
dimensions would be the set {(x1, x2, x3, x4)|x22 + x23 + x24 ≤ 1} where the coordinate x1 is
the axis.

Exercise 2.14 What is the surface area of a d-dimensional cylinder of radius two and
height one in terms of V (d) and A(d)?

Exercise 2.15 Consider vertices of a d-dimensional cube of width two centered at the
origin. Vertices are the points (±1,±1, . . . ,±1). Place a unit-radius ball at each vertex.
Each ball fits in a cube of width two and thus no two balls intersect. Show that the
probability that a point of the cube picked at random will fall into one of the 2d unit-radius
balls, centered at the vertices of the cube, goes to 0 as d tends to infinity.

Exercise 2.16 Place two unit-radius balls in d-dimensions, one at (-2,0,0,. . . ,0 ) and the
other at (2,0,0,. . . ,0). Give an upper bound on the probability that a random line through
the origin will intersect the balls.
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Exercise 2.17 Let x be a random sample from the unit ball {x| |x| ≤ 1} in d-dimensions
with the origin as center.

1. What is the mean of the random variable x? The mean, denoted E(x), is the vector,
whose ith component is E(xi).

2. What is the component-wise variance of x?

3. For any unit length vector u, the variance of the real-valued random variable uTx is
d∑
i=1

u2iE(x2i ). Note that the xi are not independent. Using (2), simplify this expression

for the variance of x.

4. * Given two balls in d-space, both of radius one whose centers are distance s apart,
show that the volume of their intersection is at most

4e−
s2(d−1)

8

s
√
d− 1

times the volume of each ball. Hint: Relate the volume of the intersection to the
volume of a cap; then, use Lemma ??.

5. From (4), conclude that if the inter-center separation of the two balls of radius r is
Ω(r/

√
d), then they share very small mass. Theoretically, at this separation, given

randomly generated points from the two distributions, one inside each ball, it is
possible to tell which ball contains which point, i.e., classify them into two clusters
so that each cluster is exactly the set of points generated from one ball. The actual
classification requires an efficient algorithm to achive this. Note that the inter-center
separation required here goes to zero as d gets larger, provided the radius of the balls
remains the same. So, it is easier to tell apart balls (of the same radii) in higher
dimensions.

6. * In this part, you will carry out the same exercise for Gaussians. First, restate
the shared mass of two balls as

∫
x∈ space

min(f(x), g(x))dx, where f and g are just
the uniform densities in the two balls respectively. Make a similar definition for
the shared mass of two spherical Gaussians. Using this, show that for two spherical
Gaussians, each with standard deviation σ in every direction and with centers at
distance s apart, the shared mass is at most (c1/s) exp(−c2s2/.σ2), where c1 and c2
are constants. This translates to “if two spherical Gaussians have centers which are
Ω(σ) apart, then they share very little mass”. Explain.

Exercise 2.18 Prove that 1 + x ≤ ex for all real x. For what values of x is the approxi-
mation 1 + x ≈ ex good?

Exercise 2.19 Derive an upper bound on
∫∞
x=a

e
−x2
2 dx where a is a positive real. Discuss

for what values of a this is a good bound.

Hint: Use e
−x2
2 ≤ x

a
e
−x2
2 for x ≥ a.
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Exercise 2.20 Verify the formula V (d) = 2
∫ 1

0
V (d − 1)(1 − x21)

d−1
2 dx1 for d = 1 and

d = 2 by integrating and comparing with V (2) = π and V (3) = 4
3
π

Exercise 2.21 What is the volume of a radius r cylinder of height h in d-dimensions?

Exercise 2.22 Consider the upper half of a unit-radius ball in d-dimensions. What is the
height of the maximum volume cylinder that can be placed entirely inside the hemisphere?
As you increase the height of the cylinder, you need to reduce the cylinder’s radius so that
it will lie entirely within the hemisphere.

Exercise 2.23 What is the volume of the maximum size d-dimensional hypercube that
can be placed entirely inside a unit radius d-dimensional ball?

Exercise 2.24 In showing that the volume of a unit ball was near the equator we obtained
an upper bound on the volume of the upper hemisphere above the slice of

1

ε(d− 1)
e
d−1
2
ε2V (d− 1)

and a lower bound on the volume of the upper hemisphere of 1
2
√
d−1V (d − 1). Show that

for a radius r sphere these bounds become rd+1

ε(d−1)e
d−1
2 ( εr )

2

V (d− 1) and rd

2
√
d−1V (d− 1) and

that the ratio is 2r
ε
√
d−1e

d−1
2 ( εr )

2

.

Exercise 2.25 For a 1,000-dimensional unit-radius ball centered at the origin, what frac-
tion of the volume of the upper hemisphere is above the plane x1 = 0.1? Above the plane
x1 = 0.01?

Exercise 2.26 Let
{
x
∣∣ |x| ≤ 1

}
be a d-dimensional, unit radius ball centered at the ori-

gin. What fraction of the volume is the set {(x1, x2, . . . , xd)|∀i |xi| ≤ 1√
d
}?

Exercise 2.27 Almost all of the volume of a ball in high dimensions lies in a narrow
slice of the ball at the equator. However, the narrow slice is determined by the point on
the surface of the ball that is designated the North Pole. Explain how this can be true
if several different locations are selected for the location of the North Pole giving rise to
different equators.

Exercise 2.28 Explain how the volume of a ball in high dimensions can simultaneously
be in a narrow slice at the equator and also be concentrated in a narrow annulus at the
surface of the ball.

Exercise 2.29 Project the vertices of a high-dimensional cube onto a line from (0, 0, . . . , 0)
to (1, 1, . . . , 1). Argue that the “density” of the number of projected points (per unit dis-
tance) varies roughly as a Gaussian with variance O(1) with the mid-point of the line as
center.
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Exercise 2.30

1. A unit cube has vertices, edges, faces, etc. How many k-dimensional objects are in
a d-dimensional cube?

2. What is the surface area of a unit cube in d-dimensions?

3. What is the surface area of the cube if the length of each side was 2?

4. Prove that the volume of a unit cube is close to its surface.

Exercise 2.31 Define the equator of a d-dimensional unit cube to be the hyperplane{
x|

d∑
i=1

xi = d
2

}
.

1. Are the vertices of a unit cube concentrated close to the equator?

2. Is the volume of a unit cube concentrated close to the equator?

3. Is the surface area of a unit cube concentrated close to the equator?

Exercise 2.32 How large must ε be for 99% of the volume of a d-dimensional unit-radius
ball to lie in the shell of ε-thickness at the surface of the ball?

Exercise 2.33 Calculate the ratio of area above the plane x1 = ε of a unit radius ball
in d-dimensions for ε = 0.01, 0.02, 0.03, 0.04, 0.05 and for d = 100 and d = 1, 000. Also
calculate the ratio for ε = 0.001 and d = 1, 000.

Exercise 2.34 1. What is the maximum size rectangle that can be fitted in a unit
variance Gaussian?

2. What rectangle best approximates a unit variance Gaussian if one measure goodness
of fit by how small the symmetric difference of the Gaussian and rectangle is.

Exercise 2.35 Generate 500 points uniformly at random on the surface of a unit-radius
ball in 50 dimensions. Then randomly generate five additional points. For each of the five
new points, calculate a narrow band at the equator, assuming the point was the North Pole.
How many of the 500 points are in each band corresponding to one of the five equators?
How many of the points are in all five bands? How wide do the bands need to be for all
points to be in all five bands?

Exercise 2.36 We have claimed that a randomly generated point on a ball lies near the
equator of the ball, wherever we place the North Pole. Is the same claim true for a
randomly generated point on a cube? To test this claim, randomly generate ten ±1 valued
vectors in 128 dimensions. Think of these ten vectors as ten choices for the North Pole.
Then generate some additional ±1 valued vectors. To how many of the original vectors is
each of the new vectors close to being perpendicular; that is, how many of the equators is
each new vector close to?
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Exercise 2.37 Consider two random vectors in a high-dimensional space. Assume the
vectors have been normalized so that their lengths are one and thus the points lie on a
unit ball. Assume one of the vectors is the North pole. Prove that the ratio of the area
of a cone, with axis at the North Pole of fixed angle say 45◦ to the area of a hemisphere,
goes to zero as the dimension increases. Thus, the probability that the angle between two
random vectors is at most 45◦ goes to zero. How does this relate to the result that most
of the volume is near the equator?

Exercise 2.38 Consider a slice of a 100-dimensional ball that lies between two parallel
planes, each equidistant from the equator and perpendicular to the line from the North
Pole to the South Pole. What percentage of the distance from the center of the ball to the
poles must the planes be to contain 95% of the surface area?

Exercise 2.39 Place n points at random on a d-dimensional unit-radius ball. Assume d
is large. Pick a random vector and let it define two parallel hyperplanes on opposite sides
of the origin that are equal distance from the origin. How far apart can the hyperplanes
be moved and still have the probability that none of the n points lands between them be at
least .99?

Exercise 2.40 Project the surface area of a d-dimensions ball of radius
√
d onto a line

through the center. For large d, give an intuitive argument that the projected surface area
should behave like a Gaussian.

Exercise 2.41 Consider the simplex

S = {x |xi ≥ 0, 1 ≤ i ≤ d;
d∑
i=1

xi ≤ 1}.

For a random point x picked with uniform density from S, find E(x1 + x2 + · · · + xd).
Find the centroid of S.

Exercise 2.42 How would you sample uniformly at random from the parallelepiped

P = {x |0 ≤ Ax ≤ 1},

where A is a given nonsingular matrix? How about from the simplex

{x | 0 ≤ (Ax)1 ≤ (Ax)2 · · · ≤ (Ax)d ≤ 1}?

Your algorithms must run in polynomial time.

Exercise 2.43 Let G be a d-dimensional spherical Gaussian with variance 1
2

centered at
the origin. Derive the expected squared distance to the origin.

Exercise 2.44
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1. Write a computer program that generates n points uniformly distributed over the
surface of a unit-radius d-dimensional ball.

2. Generate 200 points on the surface of a sphere in 50 dimensions.

3. Create several random lines through the origin and project the points onto each line.
Plot the distribution of points on each line.

4. What does your result from (3) say about the surface area of the sphere in relation
to the lines, i.e., where is the surface area concentrated relative to each line?

Exercise 2.45 If one generates points in d-dimensions with each coordinate a unit vari-
ance Gaussian, the points will approximately lie on the surface of a sphere of radius

√
d.

1. What is the distribution when the points are projected onto a random line through
the origin?

2. If one uses a Gaussian with variance four, where in d-space will the points lie?

Exercise 2.46 Randomly generate a 100 points on the surface of a sphere in 3-dimensions
and in 100-dimensions. Create a histogram of all distances between the pairs of points in
both cases.

Exercise 2.47 We have claimed that in high dimensions, a unit variance Gaussian cen-
tered at the origin has essentially zero probability mass in a unit-radius sphere centered at
the origin. Show that as the variance of the Gaussian goes down, more and more of its
mass is contained in the unit-radius sphere. How small must the variance be for 0.99 of
the mass of the Gaussian to be contained in the unit-radius sphere?

Exercise 2.48 Consider two unit-radius spheres in d-dimensions whose centers are dis-
tance δ apart where δ < 1 is a constant independent of d. Let x be a random point on
the surface of the first sphere and y a random point on the surface of the second sphere.
Prove that as d goes to infinity, the probability that |x− y|2 is more than 2 + δ2 + s, falls
off exponentially with s.

Exercise 2.49 Pick a point x uniformly at random from the following set in d-space:

K = {x|x41 + x42 + · · ·+ x4d ≤ 1}.

1. Show that the probability that x41 + x42 + · · ·+ x4d ≤ 1
2

is 1
2d/4

.

2. Show that with high probability, x41 + x42 + · · ·+ x4d ≥ 1−O(1/d).

3. Show that with high probability, |x1| ≤ O(1/d1/4).

Exercise 2.50 Suppose there is an object moving at constant velocity along a straight
line. You receive the gps coordinates corrupted by Gaussian noise every minute. How do
you estimate the current position?
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Exercise 2.51 Let x1, x2, . . . , xn be independent samples of a random variable x with

mean m and variance σ2. Let ms = 1
n

n∑
i=1

xi be the sample mean. Suppose one estimates

the variance using the sample mean rather than the true mean, that is,

σ2
s =

1

n

n∑
i=1

(xi −ms)
2

Prove that E(σ2
s) = n−1

n
σ2 and thus one should have divided by n− 1 rather than n.

Hint: First calculate the variance of the sample mean and show that var(ms) = 1
n

var(x).
Then calculate E(σ2

s) = E[ 1
n

∑n
i=1(xi−ms)

2] by replacing xi−ms with (xi−m)−(ms−m).

Exercise 2.52 Generate ten values by a Gaussian probability distribution with zero mean
and variance one. What is the center determined by averaging the points? What is the
variance? In estimating the variance, use both the real center and the estimated center.
When using the estimated center to estimate the variance, use both n = 10 and n = 9.
How do the three estimates compare?

Exercise 2.53 Suppose you want to estimate the unknown center of a Gaussian in d-
space which has variance one in each direction. Show that O(log d/ε2) random samples
from the Gaussian are sufficient to get an estimate µ̃ of the true center µ, so that with
probability at least 99/100,

|µ− µ̃|∞ ≤ ε.

How many samples are sufficient to ensure that

|µ− µ̃| ≤ ε?

Exercise 2.54 Use the probability distribution 1
3
√
2π
e−

1
2

(x−5)2

9 to generate ten points.

(a) From the ten points estimate µ. How close is the estimate of µ to the true mean of
5?

(b) Using the true mean of 5, estimate σ2 by the fomula σ2 = 1
10

10∑
i=1

(xi − 5)2. How close

is the estimate of σ2 to the true variance of 9?

(c) Using your estimate of the mean, estimate σ2 by the fomula σ2 = 1
10

10∑
i=1

(xi−5)2. How

close is the estimate of σ2 to the true variance of 9?

(d) Using your estimate of the mean, estimate σ2 by the fomula σ2 = 1
9

10∑
i=1

(xi− 5)2. How

close is the estimate of σ2 to the true variance of 9?
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Exercise 2.55 The Cauchy distribution in one dimension is Prob(x) = 1
π

1
1+x2

. What
would happen if one tried to extend the distribution to higher dimensions by the formula
Prob(r) = c 1

1+r2
, where r is the distance from the origin? What happens when you try to

determine a normalization constant c?

Exercise 2.56 Consider the power law probability density

p(x) =
c

max(1, x2)
=

{
c 0 ≤ x ≤ 1
c
x2

x > 1

over the nonnegative real line.

1. Determine the constant c.

2. For a nonnegative random variable x with this density, does E(x) exist? How about
E(x2)?

Exercise 2.57 Consider d-space and the following density over the positive orthant:

p(x) =
c

max(1, |x|a)
.

Show that a > d is necessary for this to be a proper density function. Show that a > d+ 1
is a necessary condition for a (vector-valued) random variable x with this density to have
an expected value E(|x|). What condition do you need if we want E(|x|2) to exist?

Exercise 2.58 Assume you can generate a value uniformly at random in the interval
[0, 1]. How would you generate a value according to a probability distribution p(x)?

Exercise 2.59 Let x be a random variable with probability density 1
4

for 0 ≤ x ≤ 4 and
zero elsewhere.

1. Use Markov’s inequality to bound the probability that x > 3.

2. Make use of Prob(|x| > a) = Prob(x2 > a2) to get a tighter bound.

3. What is the bound using Prob(|x| > a) = Prob(xr > ar)?

Exercise 2.60 Consider the probability distribution p(x = 0) = 1− 1
a

and p(x = a) = 1
a
.

Plot the probability that x is greater than or equal to b as a function of b for the bound
given by Markov’s inequality and by Markov’s inequality applied to x2 and x4.

Exercise 2.61 Suppose x and y are two random 0-1 d-vectors. Show that with high
probability the cosine of the angle between them is close to 1

2
. Hint: Model your proof after

that of the random projection theorem.
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Exercise 2.62 Generate 20 points uniformly at random on a 1,000-dimensional sphere
of radius 100. Calculate the distance between each pair of points. Then, project the data
onto subspaces of dimension k=100, 50, 10, 5, 4, 3, 2, 1 and calculate the difference

between
√

k
d

times the original distances and the new pair-wise distances. For each value

of k what is the maximum difference as a percent of
√

k
d
.

Exercise 2.63 You are given two sets, P and Q, of n points each in n-dimensional space.
Your task is to find the closest pair of points, one each from P and Q, i.e., find x in P
and y in Q such that |x− y| is minimum.

1. Show that this can be done in time O(n3).

2. Show how to do this with relative error 0.1% in time O(n2 lnn), i.e., you must find
a pair x ∈ P,y ∈ Q so that the distance between them is, at most, 1.001 times the
minimum possible distance. If the minimum distance is 0, you must find x = y.

Exercise 2.64 Given n data points in d-space, find a subset of k data points whose vector
sum has the smallest length. You can try all

(
n
k

)
subsets, compute each vector sum in time

O(kd) for a total time of O
((
n
k

)
kd
)
. Show that we can replace d in the expression above

by O(k lnn), if we settle for an answer with relative error .02%.

Exercise 2.65 In d-dimensions there are exactly d-unit vectors that are pairwise orthog-
onal. However, if you wanted a set of vectors that were almost orthogonal you might
squeeze in a few more. For example, in 2-dimensions if almost orthogonal meant at least
45 degrees apart you could fit in three almost orthogonal vectors. Suppose you wanted to
find 900 almost orthogonal vectors in 100 dimensions where almost orthogonal meant an
angle of between 85 and 95 degrees. How would you generate such a set?
Hint: Consider projecting a 1,000 orthonormal vectors to a random 100-dimensional
space.

Exercise 2.66 To preserve pairwise distances between n data points in d space, we pro-
jected to a random O(lnn/ε2) dimensional space. To save time in carrying out the pro-
jection, we may try to project to a space spanned by sparse vectors, vectors with only
a few nonzero entries. that is, choose say O(lnn/ε2) vectors at random, each with 100
nonzero components and project to the space spanned by them. Will this work (to preserve
approximately all pairwise distances) ? Why?

Exercise 2.67 Create a list of the five most important things that you learned about high
dimensions.

Exercise 2.68 Write a short essay whose purpose is to excite a college freshman to learn
about high dimensions.
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