
Lecture 5

Comparison-based Lower Bounds for

Sorting

5.1 Overview

In this lecture we discuss the notion of lower bounds, in particular for the problem of sorting. We
show that any deterministic comparison-based sorting algorithm must take Ω(n log n) time to sort
an array of n elements in the worst case. We then extend this result to average case performance,
and to randomized algorithms. In the process, we introduce the 2-player game view of algorithm
design and analysis.

5.2 Sorting lower bounds

So far we have been focusing on the question: “given some problem X, can we construct an
algorithm that runs in time O(f(n)) on inputs of size n?” This is often called an upper bound
problem because we are determining an upper bound on the inherent difficulty of problem X, and
our goal here is to make f(n) as small as possible. In this lecture we examine the “lower bound
problem.” Here, the goal is to prove that any algorithm must take time Ω(g(n)) time to solve
the problem, where now our goal is to do this for g(n) as large as possible. Lower bounds help
us understand how close we are to the best possible solution to some problem: e.g., if we have an
algorithm that runs in time O(n log2 n) and a lower bound of Ω(n log n), then we have a log(n)
“gap”: the maximum possible savings we could hope to achieve by improving our algorithm.

Often, we will prove lower bounds in restricted models of computation, that specify what types of
operations may be performed on the input and at what cost. So, a lower bound in such a model
means that if we want to do better, we would need somehow to do something outside the model.

Today we consider the class of comparison-based sorting algorithms. These are sorting algorithms
that only operate on the input array by comparing pairs of elements and moving elements around
based on the results of these comparisons. In particular, let us make the following definition.

Definition 5.1 A comparison-based sorting algorithm takes as input an array [a1, a2, . . . , an] of n
items, and can only gain information about the items by comparing pairs of them. Each comparison
(“is ai > aj?”) returns YES or NO and counts a 1 time-step. The algorithm may also for free
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reorder items based on the results of comparisons made. In the end, the algorithm must output a
permutation of the input in which all items are in sorted order.

For instance, Quicksort, Mergesort, and Insertion-sort are all comparison-based sorting algorithms.
What we will show is the following theorem.

Theorem 5.1 Any deterministic comparison-based sorting algorithm must perform Ω(n log n) com-
parisons to sort n elements in the worst case. Specifically, for any deterministic comparison-based
sorting algorithm A, for all n ≥ 2 there exists an input I of size n such that A makes at least
log2(n!) = Ω(n log n) comparisons to sort I.

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose a
pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any possible
(comparison-based) algorithm that might exist. The way we will do this is by showing that in order
to sort its input, the sorting algorithm is implicitly playing a game of “20 questions” with the input,
and an adversary by responding correctly can force the algorithm to ask many questions before it
can tell what is the correct permutation to output.

Proof: Recall that the sorting algorithm must output a permutation of the input [a1, a2, . . . , an].
The key to the argument is that (a) there are n! different possible permutations the algorithm might
output, and (b) for each of these permutations, there exists an input for which that permutation
is the only correct answer. For instance, the permutation [a3, a1, a4, a2] is the only correct answer
for sorting the input [2, 4, 1, 3]. In fact, if you fix a set of n distinct elements, then there will be a
1-1 correspondence between the different orderings the elements might be in and the permutations
needed to sort them.

Given (a) and (b) above, this means we can fix some set of n! inputs (e.g., all orderings of
{1, 2, . . . , n}), one for each of the n! output permutations.

let S be the set of these inputs that are consistent with the answers to all comparisons made so
far (so, initially, |S| = n!). We can think of a new comparison as splitting S into two groups:
those inputs for which the answer would be YES and those for which the answer would be NO.
Now, suppose an adversary always gives the answer to each comparison corresponding to the larger
group. Then, each comparison will cut down the size of S by at most a factor of 2. Since S initially
has size n!, and by construction, the algorithm at the end must have reduced |S| down to 1 in order
to know which output to produce, the algorithm must make at least log2(n!) comparisons before
it can halt. We can then solve:

log2(n!) = log2(n) + log2(n − 1) + . . . + log2(2)

= Ω(n log n).

Notice that our proof is like a game of 20 Questions in which the responder (the adversary) doesn’t
actually decide what he is thinking of until there is only one option left. This is legitimate because
we just need to show that there is some input that would cause the algorithm to take a long time.
In other words, since the sorting algorithm is deterministic, we can take that final remaining option
and then re-run the algorithm on that specific input, and the algorithm will make the same exact
sequence of operations.

Let’s do an example with n = 3, and S as initially consisting of the 6 possible orderings of {1, 2, 3}:

(123), (132), (213), (231), (312), (321).
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Suppose the sorting algorithm initially compares the first two elements a1 and a2. Half of the
possibilities have a1 > a2 and half have a2 > a1. So, the adversary can answer either way and let’s
say it answers that a2 > a1. This narrows down the input to the three possibilities:

(123), (132), (231).

Suppose the next comparison is between a2 and a3. In this case, the most popular answer is
that a2 > a3, so the adversary returns that answer which removes just one ordering, leaving the
algorithm with:

(132), (231).

It now takes one more comparison to finally isolate the input ordering and determine the correct
permutation to output.

Alternative view of the proof: Another way of looking at the proof we gave above is as follows.
For a deterministic algorithm, the permutation it outputs is solely a function of the series of answers
it receives (any two inputs producing the same series of answers will cause the same permutation to
be output). So, if an algorithm always made at most k < lg(n!) comparisons, then there are at most
2k < n! different permutations it can possibly output. In other words, there is some permutation
it can’t output. So, the algorithm will fail on any input for which that permutation is the only
correct answer.

Question: Suppose we consider the problem: “order the input array so that the smallest n/2
come before the largest n/2”? Does our lower bound still hold for that problem, or where does it
break down? How fast can you solve that problem?

Answer: No, the proof does not still hold. It breaks down because any given input can have multi-
ple correct answers. E.g., for input [2 1 4 3], we could output any of [a1, a2, a3, a4], [a2, a1, a3, a4],
[a1, a2, a4, a3], or [a2, a1, a4, a3]. In fact, not only does the lower bound break down, but we can
actually solve this problem in linear time: just run the linear-time median-finding algorithm and
then make a second pass putting elements into the first half or second half based on how they
compare to the median.

5.3 Average-case lower bounds

In fact, we can generalize the above theorem to show that any comparison-based sorting algorithm
must take Ω(n log n) time on average, not just in the worst case.

Theorem 5.2 For any deterministic comparison-based sorting algorithm A, the average-case num-
ber of comparisons (the number of comparisons on average on a randomly chosen permutation of
n distinct elements) is at least ⌊log2(n!)⌋.

Proof: Let S be the set of all n! possible orderings of n distinct elements. As noted in the previous
argument, these each require a different permutation to be produced as output. Let’s now build
out the entire decision tree for algorithm A on S: the tree we get by looking at all the different
question/answer paths we get by running algorithm A on the inputs in S. This tree has n! leaves,
where the depth of a leaf is the number of comparisons performed by the sorting algorithm on
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that input. Our goal is to show that the average depth of the leaves must be at least ⌊log2(n!)⌋
(previously, we only cared about the maximum depth).

If the tree is completely balanced, then each leaf is at depth ⌈log2(n!)⌉ or ⌊log2(n!)⌋ and we are
done.1 To prove the theorem, we just need to show that out of all binary trees on a given number
of leaves, the one that minimizes their average depth is a completely balanced tree. This is not
too hard to see: given some unbalanced tree, we take two sibling leaves at largest depth and move
them to be children of the leaf of smallest depth. Since the difference between the largest depth
and the smallest depth is at least 2 (otherwise the tree would be balanced), this operation reduces
the average depth of the leaves. Specifically, if the smaller depth is d and the larger depth is D, we
have removed two leaves of depth D and one of depth d, and we have added two leaves of depth
d+1 and one of depth D− 1. Since any unbalanced tree can be modified to have a smaller average
depth, such a tree cannot be one that minimizes average depth, and therefore the tree of smallest
average depth must in fact be balanced.

In fact, if we are a bit more clever in the proof, we can get rid of the floor in the bound.

5.4 Lower bounds for randomized algorithms

Theorem 5.3 The above bound holds for randomized algorithms too.

Proof: The argument here is a bit subtle. The first step is to argue that with respect to
counting comparisons, we can think of a randomized algorithm A as a probability distribution over
deterministic algorithms. In particular, we can think of a randomized algorithm A as a deterministic
algorithm with access to a special “random bit tape”: every time A wants to flip a coin, it just pulls
the next bit off that tape. In that case, for any given run of algorithm A, say reading bit-string
s from that tape, there is an equivalent deterministic algorithm As with those bits hardwired in.
Algorithm A is then a probability distribution over all those deterministic algorithms As.

This means that the expected number of comparisons made by randomized algorithm A on some
input I is just ∑

s

Pr(s)(Running time of As on I).

If you recall the definition of expectation, the running time of the randomized algorithm is a random
variable and the sequences s correspond to the elementary events.

So, the expected running time of the randomized algorithm is just an average over deterministic
algorithms. Since each deterministic algorithm has average-case running time at least ⌊log2(n!)⌋,
any average over them must too. Formally, the average-case running time of the randomized
algorithm is

avg
inputs I

∑

s

[Pr(s)(Running time of As on I)] =
∑

s

avg
I

[Pr(s)(Running time of As on I)]

=
∑

s

Pr(s) avg
I

(Running time of As on I)

1Let us define a tree to be completely balanced if the deepest leaf is at most one level deeper than the shallowest

leaf. Everything would be easier if we could somehow assume n! was a power of 2....
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≥
∑

s

Pr(s)⌊log2(n!)⌋

= ⌊log2(n!)⌋.

One way to think of the kinds of bounds we have been proving is to think of a matrix with one
row for every possible deterministic comparison-based sorting algorithm (there could be a lot of
rows!) and one column for every possible permutation of n given input elements (there are a lot of
columns too). Entry (i, j) in this matrix contains the running time of algorithm i on input j. The
worst-case deterministic lower bound tells us that for each row i there exists a column ji such that
the entry (i, ji) is large. The average-case deterministic lower bound tells us that for each row i,
the average of the elements in the row is large. The randomized lower bound says “well, since the
above statement holds for every row, it must also hold for any weighted average of the rows.” In
the language of game-theory, one could think of this as a two-player game (much like rock-paper-
scissors) between an “algorithm player” who gets to pick a row and an adversarial “input player”
who gets to pick a column. Each player makes their choice and the entry in the matrix is the
cost to the algorithm-player which we can think of as how much money the algorithm-player has
to pay the input player. We have shown that there is a randomized strategy for the input player
(namely, pick a column at random) that guarantees it an expected gain of Ω(n log n) no matter
what strategy the algorithm-player chooses.


