Fingerprinting

Many Patterns: You are given a set of patterns P_1, P_2, \ldots, P_k of equal length (all of them having length n) and a text T of length m. Give an algorithm to find all the locations i such that some pattern P_j occurs as a substring of T starting at location i. The expected runtime should be $O(kn + m)$, and the probability of error is at most 0.01.

Solution: (Sketch.) Use Karp-Rabin fingerprinting and hashing. First, pick a random prime in some set $[M]$ and compute Karp-Rabin hashes $g_p(P_j) = P_j \mod p$ of the P_js in time $O(kn)$. Store these hashes in another hash table of size $O(k)$ whose hash function h is chosen from a universal hash family. At each location i of the text, compute $g_p(T_{i \ldots i+(n-1)})$ in $O(1)$ time, hash this via h and look for matches over all patterns mapped to this location. In expectation there will be $O(1)$ of them (since k patterns are being hashed into k locations), so the expected time for this is $O(1)$, and for the whole algorithm is $O(m + kn)$. The error probability is k times that in lecture, so choosing $M = \Theta(kmn \log(kmn))$ suffices.

Dynamic Programming

Longest Increasing Subsequence: Given an array A of n integers like $[7 \ 2 \ 5 \ 3 \ 4 \ 6 \ 9]$, find the longest subsequence that’s in increasing order (in this case, it would be $2 \ 3 \ 4 \ 6 \ 9$). Give a dynamic-programming algorithm that runs in time $O(n^2)$ to solve this problem.

1. To keep things simple, first let’s say you just need to output the *length* of the longest-increasing subsequence. E.g., in the above case, the length is 5.

 Hint: suppose that for each $i'<i$ you have computed the length of the LIS of $A_{0..i'}$ that ends with $A[i']$. How would you use this to solve the corresponding problem for i?

 Solution: $A[i] = \max\{A[i'] + 1 : i' < i, A[i'] < A[i]\}$, or $A[i] = 1$ if there are no such i'.

2. Now extend your solution to actually find the LIS.

 Solution: One approach is when computing the max above, to also have a separate array that stores the argmax, that is, the index i' such that $A[i] = A[i'] + 1$. One can then read off the sequence by going backwards from the end.

1 Assume you can do arithmetic operations on numbers of size $O(\log(kmn))$ in constant time, even modulo a prime.
Making Change: You are given denominations \(v_1, v_2, \ldots, v_n \) (all integers) of the various kinds of currency you have. (Say \(v_1 = 1 \), so you can make change for any integer amount \(C \geq 1 \).) Given \(C \), give a dynamic programming solution which makes change for \(C \) with the fewest bills possible.

(Again, as a first stab, compute the number of bills required, and then extend the solution to output the number of bills of each denomination needed.)

Solution: Create an array \(B \) where \(B[C'] \) represents the fewest bills needed to make change for \(C' \). We can fill this in using the formula \(B[C'] = \min\{ B[C' - v_i] + 1 : v_i \leq C' \} \), where we begin with \(B[0] = 0 \) and then work upward from \(C' = 1 \) to \(C \). The total time taken is \(O(Cn) \).

Making Change (Part II): Now suppose you have only one bill of each denomination \(i \). Given \(C \), give a dynamic programming solution which makes change for \(C \) using the fewest bills, using no more than one bill of each denomination \(i \) (or says this is not possible).

Solution: One approach is to create a 2-dimensional array \(B \) where \(B[C', i] \) represents the fewest bills needed to make change for \(C' \) using denominations \(1, 2, \ldots, i \) only (or infinity if it is not possible). Base case \(B[0, 0] = 0 \) and \(B[C', 0] = \infty \) for \(C' > 0 \). For general values of \(i \) we have \(B[C', i] = \min\{ B[C', i - 1], B[C' - v_i, i - 1] + 1 \} \) if \(C' - v_i \geq 0 \) or else \(B[C', i] = B[C', i - 1] \) if \(C' - v_i < 0 \).

Making Change (Part III): Can you solve the problem if you have \(\ell_i \) bills of denomination \(i \)?

Solution: We can just modify the formula for \(B \) above to:

\[
B[C', i] = \min\{ B[C' - jv_i, i - 1] + j : 0 \leq j \leq \ell_i, C' - jv_i \geq 0 \}.
\]

Balanced Partition. You have a set of \(n \) integers each in the range \(0, \ldots, K \). In time \(O(n^2K) \), partition these integers into two subsets such that you minimize \(|S_1 - S_2| \), where \(S_1 \) and \(S_2 \) denote the sums of the elements in each of the two subsets.

Solution: Let \(S \) be the sum of all the integers. Then \(S \leq nK \). To minimize \(|S_1 - S_2| \) it suffices to find a set \(A_1 \) whose numbers sum to \(S_1 \leq \lfloor S/2 \rfloor \), that is as close to \(S/2 \) as possible. And this can be done by a dynamic program like for knapsack, in time \(O(nS) = O(n^2K) \).