
Autograph Quick Start Guide

Autograph Development Team
Email: autograph@autograph.cs.cmu.edu

URL: http://autograph.cs.cmu.edu

mailto:autograph@autograph.cs.cmu.edu
http://autograph.cs.cmu.edu

i

Table of Contents

1 Autograph Introduction . 1
1.1 What is Autograph? . 1
1.2 Features and Limitations . 1
1.3 More information . 2

2 Requirements. 3
2.1 Network Tap . 3
2.2 Hardware and Software Requirement . 3

3 Installation . 4
3.1 Download. 4
3.2 Install . 4

4 Getting Started . 5
4.1 Quick Configuration . 5
4.2 Start/Stop Autograph . 5
4.3 Autograph Output . 6

5 Autograph Overview . 7
5.1 Suspicious flow selection (sffilter) . 7
5.2 Content-prevalence analysis (copp) . 7

6 Configuration . 9
6.1 sffilter configuration . 9
6.2 copp configuration. 10
6.3 signature blacklist . 10

Index . 12

Chapter 1: Autograph Introduction 1

1 Autograph Introduction

1.1 What is Autograph?

Autograph is a system that automatically generates signatures for novel Internet worms
propagate using TCP transport. The signatures generated by Autograph are the byte
patterns unique and specific to Internet worm traffic payloads. Those signatures can be
used by conventional Intrusion Detection Systems (IDSes) to identify and/or filter malicious
worm flows.

Fast and accurate generation of worm signatures is crucial for IDSes to effectively in-
tervene to halt and reverse the spreading of novel Internet worms. However, the signature
generation has been known to entail non-trivial human labor and thus significant delay.
Autograph’s main goal is to reduce the time to generate good signatures when worms out-
break.

Autograph is designed with the following desirable properties in mind:
Timeliness to enable fast reaction against aggresively spreading Internet worms.
Automation to take human out of the signature generation loop and thus achieve faster
signature generation.
High quality signature generation to allow reliable and fully automated signature de-
ployment.
Application neutrality to defend a broader set of Internet applications.
Robustness against worm payload variability to generate useful signatures even when
the worms change some portion of payloads while propagating.

Autograph achieves those properties by monitoring suspicious traffic flowing into the edge
networks’ DMZs and analyzing the prevalence of portions of flow payloads. Moreover, Au-
tograph leverages the multiple monitoring points dispersed in the Internet to achieve much
faster signature detection. For more detail on Autograph’s signature generation technique
and the preliminary analysis see one of our Usenix Security papers titled Autograph: Toward
Automated, Distributed Worm Signature Detection (http://autograph.cs.cmu.edu).

1.2 Features and Limitations

Autograph is recently proposed and still evolving. The current distribution of Autograph
source code includes only a subset of the full Autograph features presented in the Usenix
Security paper.

Simple suspicious flow selection technique: The current Autograph distribution uses
a simple port-scanner-detection technique to determine suspicious incoming flows. Au-
tograph counts failed connection attempts from each external source IP by monitoring
the completion of TCP SYN/ACK handshaking. ICMP monitoring, countermeasure
of spoofed scanning, more sophisticated scanner detection techniques are not yet in-
corperated into this version of Autograph.
Generating signatures of TCP scanning worms: Currently, Autograph can gener-
ate signatures for TCP worms that spread by scanning the Internet. Autograph is

http://autograph.cs.cmu.edu

Chapter 1: Autograph Introduction 2

application-neutral and thus it does not require any application-specific knowledge
above TCP layer.
Flow reassembly: Autograph performs flow reassembly for packets belonging to sus-
picious flows. Note that the perfect flow reassembly is a non-trivial task and often it
is impossible to achieve because of the difference between Autograph’s view and the
connection endpoints’ view.
COntent-based Payload Partitioning(COPP): After accumulating enough number of
suspicious flows, Autograph performs COPP to partition the payloads into variable-
length chunks (content-block). Then, it constructs a prevalence histogram to determine
frequently occuring patterns across captured suspicious flows. COPP is a technique to
partition payloads based on their content and thus, Autograph can tolerate a certain
degree of payload variability. Note that, however, strong polymorphism or encryption
is still a big challenge.
Output in Bro’s signature format: This version of Autograph outputs the detected
signatures only in Bro’s signature format. However, you can find it easy to convert the
output into a different IDS’s signature format.
Linux-based system: We developed and tested the current version only in Red Hat
Linux system with a Fast Ethernet network interface. We hope to port Autograph for
other type of Unix-based operating systems and different network interfaces.
Single monitor support: The current distribution relies on the local observation to
select suspicious traffic and generate signatures. It does not include the tattler module
that enables information sharing across multiple Autograph monitors yet.

We keep adding more features into Autograph implementation. We will appreciate so
much your feedback and suggestion, that is valuable for the future release of improved
Autograph.

1.3 More information

The official Autograph website, where you can find the latest Autograph distribution
and the related document, is located at:

http://autograph.cs.cmu.edu.
Send questions on any Autograph subject to autograph-users@mailman.srv.cs.cmu.edu.

You can subscribe by going to the official Autograph website,

http://autograph.cs.cmu.edu

Chapter 2: Requirements 3

2 Requirements

2.1 Network Tap

Autograph needs to be installed at the boundary of your network, where communication
between internal and external hosts can be monitored. DMZ is the typical place for you to
put Autograph. However, note that Autograph currently relies on port-scanner information
to identify suspicious flows. Thus, Autograph needs to be placed before any proxy that filters
out scanning activities.

You may choose to feed Autograph only inbound traffic because of restriction in your net-
work topoloty or large traffic volume. Then, Autograph will try to guess the completion of
connection setup based on time-out. Since the current version performs content-prevalence
analysis on inbound suspicious flows, Autograph is still able to generate signatures. How-
ever, this one-way communication monitoring will affect the performance and accuracy of
Autograph’s suspicious flow selection heuristic.

2.2 Hardware and Software Requirement

Hardware: Current Autograph requires no special hardware, and can be run on general
type of PCs. For example, we are currently running Autograph on a general PC with
Intel Pentium4 3.06GHz CPU, 1GB RAM, and a 100GB HDD to monitor a T3 network
link.
Operating System: Current Autograph is developed and tested on Linux and FreeBSD.
We plan to support other type of Unix operating systems in the near future.
Hard disk: Current Autograph stores intermediate states and outputs the final results
in HDD. Fast and large harddisk drive is recommended.
User privileges: superuser to install Autograph and tap network interfaces in promis-
cuous mode. However, if you just want to test Autograph offline with tcpdump packet
traces, you do not have to be a superuser.
Network Interfaces: Packet capture on 100Mbps Ethernet card with libpcap support
is tested.
Software:

libpcap version 0.8 or higher (http://www.tcpdump.org) for network tap
rabinpoly version 1.0 or higher (http://www.cs.cmu.edu/~hakim/software) for
COPP
Perl version 5.6 or higher (http://www.perl.org) to use utilities

Note: Autograph needs the full source code of rabinpoly for compile. You don’t have
to compile or install the rabinpoly library. For more detail, refer to the Installation
section.

http://www.tcpdump.org
http://www.cs.cmu.edu/~hakim/software
http://www.perl.org

Chapter 3: Installation 4

3 Installation

3.1 Download

1. Download Autograph from: http://autograph.cs.cmu.edu.
2. Download rabinpoly from: http://www.cs.cmu.edu/~hakim/software.

3.2 Install

You have to have the following information before beginning Autograph installation.
* localnets: a list of local subnets for your network. Autograph needs to know which
networks are internal and generates signatures only from inbound flows currently.
* network interface: the network interface of the monitoring box where the monitored
network traffic will be fed. By default, the easy-to-start script tries to access eth0.
If you use different interface, you have to specify the interface name accordingly. For
more detail, please refer to the section "Running Autograph".

Autograph installation is very easy. First, un-tar both Autograph and rabinpoly
distributions under the same directory. Let’s say you start Autograph building from
‘tmp-autograph’ directory.

> cd tmp-autograph
> tar xvzf autograph-0.1.tar.gz
> tar xvzf rabinpoly-1.0.tar.gz
> cd autograph-0.1
> ./configure

This will generate Makefiles that automatically locate rabinpoly source distribution and
will eventually install Autograph in ‘/usr/local/autograph’. If you want to install Auto-
graph in a different directory, say ‘/path/to/autograph’, run

> ./configure --prefix=/path/to/autograph

If you have the rabinpoly source distribution in a different directory, run ‘./configure’
with --with-rabinpoly option specified.

> ./configure --with-rabinpoly=/path/to/rabinpoly-1.0

Then, you build the source code by typing,
> make
> make install

This will install compiled Autograph components (‘sffilter’, ‘copp’,
‘interpreter.pl’, ‘autograph’) under ‘/path/to/autograph/bin’ directory and
sample configuration files (‘sffilter.cfg’, ‘copp.cfg’, ‘blacklist.txt’) under
‘/path/to/autograph/etc’ directory. The last command may need you to be a superuser,
depending on the permission of the installation directory.

If you want to install related documents including this manual, type
> make doc
> make docinstall

This will copy a set of compiled Autograph documents into ‘/path/to/autograph/doc’
directory.

http://autograph.cs.cmu.edu
http://www.cs.cmu.edu/~hakim/software

Chapter 4: Getting Started 5

4 Getting Started

Current Autograph consists of two components, each of which runs as a separate program
and needs a separate configuration file.

sffilter: takes packet streams from a network interface or tcpdump-style packet
dumps, selects suspicious flows, and triggers copp’s content-prevalence analysis if nec-
essary.
copp: responds to sffilter’s request by applying COPP to suspicious flows accumu-
lated in the suspicious flow pool, and generating bro-style signature after performing
content-prevalence analysis.

4.1 Quick Configuration

Autograph needs sufficient harddisk space to construct the suspicious flow pool and
store the intermediate information. That means you need prepare a directory Autograph
can access. Let’s say you use ‘/autograph-dir’ for this purpose.

First, copy two example configuration files, ‘/path/to/autograph/etc/sffilter.cfg’
and ‘/path/to/autograph/etc/copp.cfg’, into ‘/autograph-dir’. You can find the ex-
ample configuration files in etc directory under the original Autograph source tree, too.

> cd /autograph-dir
> cp /path/to/autograph/etc/sffilter.cfg .
> cp /path/to/autograph/etc/copp.cfg .

Second, you need to provide your site-specific information to Autograph by editing the
copied sffilter.cfg. The value of internal network should be replaced with your local-
net information. Assume that your network uses the IP address space 10.0.0.0/16 and
172.16.1.0/24. Then, changed sffilter.cfg looks like

internal_network 10.0.0.0/16, 172.16.1.0/24
stat_report_interval 600 # 5 min
. . .

If you want to run Autograph with the default parameter values, this is the end of the
configuration. For the detail of other parameter configuration, see Chapter 6 [Configura-
tion], page 9.

4.2 Start/Stop Autograph

For your convenience, Autograph distribution includes a wrapper shell script
autograph that invokes sffilter and copp at once. The wrapper shell script is in
‘/path/to/autograph/bin’ or in ‘aux’ directory under the original Autograph source tree.

If the network interface you are monitoring is eth0, you can start Autogran by simply
typing,

> cd /autograph-dir
> /path/to/autograph/bin/autograph start

If the network interface is other than eth0, specify the name with
--with-interface=<netinterface> option. Use --help option to find more
information on other available options of the wrapper shell script.

Chapter 4: Getting Started 6

> /path/to/autograph/bin/autograph --help

Usage: ./autograph {start|stop} [VAR=VALUE] ...

For start command, you have to specify the following variables. Otherwise,
the program will try to determine the values after examine a few possible
directories in your system.

Variables:
--with-autograph=ARG Path to installed autograph directory.
--with-copp-config=ARG Configuration file name for COPP.
--with-sffilter-config=ARG Configuration file name for Filter.
--with-bpffilter=ARG Optional BPF filter. (default: none)
--with-interface=ARG Network interface. (default: eth0)

Check with ps if both programs sffilter and copp are successfully launched.
In order to stop Autograph, use autograph stop command.

4.3 Autograph Output

If you didn’t make any configuration change other than internal network, Autograph
will creat ‘suspect_pool’ directory under your current directory (here, ‘/autograph-dir’).
Autograph uses this directory as its suspicious flow pool (SFP).

You will see other files in your current directory that hold the various output Autograph
generates. NOTE: you may not see anything interesting in those files except sig.out un-
less you have configured sffilter and copp to report states. See Chapter 6 [Configuration],
page 9 for the detail.

sig.out: generated signatures in bro-style signature format.
sffilter.err, sffilter.std: output from sffilter.
copp.err, copp.std: output from copp.
scanners_stat.txt: external IPs accused of scanning.
sfp_state.txt: suspicious flows in SFP.

See bro manual to understand bro’s signature format. http://www.bro-ids.org. The
script script/interpreter.pl in Autograph source tree may be helpful to check the gen-
erated signatures.

http://www.bro-ids.org

Chapter 5: Autograph Overview 7

5 Autograph Overview

This chapter presents a brief overview of the current Autograph implementaion included
in this distribution. This will help you understand the configurable parameters, too. As
noted, this initial distribution omits some interesting features of the complete Autograph
system. For example, this version of Autograph does not include tattler component that al-
low distributed collaboration among multiple Autograph monitors. See our Usenix Security
paper to get the full picture of the entire Autograph system.

Currently, Autograph consists of two interacting programs (sffilter,copp). sffilter
performs suspicious flow selection heuristics (scanner-detection-based heuristic) and trig-
gers copp’s content-prevalence analysis via FIFO when enough number of suspicious flows
are accumulated in SFP. The FIFO is non-blocking, and thus sffilter can send request
messages as long as the FIFO queue can hold. copp processes the request one by one.

5.1 Suspicious flow selection (sffilter)

sffilter processes packets either from a live network interface or from tcpdump-style
packet dump traces using libpcap library. It checks if the packet is originated from an
external scanner. If so, it performs flow reassembly. Completed suspicious flows’ payloads
are stored in SFP directory as files. The files (completed suspicious flows) are removed from
SFP after t thresh seconds. If the current number of flows for a port equals to or is greater
than theta thresh , sffilter signals copp by sending a request message via FIFO.

All inbound/outbout TCP packets are used to determine scanners. If an external host
has made more than or equal to s thresh failed connection attemps during the last scan-
ner lifetime seconds, Autograph considers the external host to be scanning. Once the IP
address is accused of scanning, the IP is considered a scanner for scanner lifetime seconds.

Here, a failed connection attempt means that the internal peer host is non-existent or
does not run a service on the destination port so that there is no subsequent response
from the internal host within flow inactivity timeout seconds after the initial inbound SYN
packet. Or, the internal connection peer has rejected the connection setup request. In
order to tolerate a temporal failure of servers or the noise from failed-connection-prone p2p
applications, we keep track of the pair of (internal host IP, port) used for successful con-
nection during the last server lifetime seconds, and exclude any failed connection attempts
from counting for scanner detection. You can turn on/off this heuristic by configuring
live server heuristic parameter.

5.2 Content-prevalence analysis (copp)

copp waits for incoming requests from sffilter. The request message contains infor-
mation on protocol number, port, number of suspicious flows sffilter observed, and time.
When a request message is received copp checks SFP directory and reads all the files corre-
sponding to the flows with the protocol and port number specified in the request message.
Then, it chops each flow with COPP and constructs content-prevalence histogram. To be
selected as a signature, a content-block should 1) be highly-ranked in the histogram, 2) be
generated from at least min prevalence flows, 3) be sent by at least source count different
external, and 4) be not listed in signature blacklist. See Section 6.3 [signature blacklist],

Chapter 5: Autograph Overview 8

page 10 to know how to use signature blakclist option. The best source for more information
on COPP and Autograph’s content-prevalence analysis is the recent Usenix Security Paper.

Chapter 6: Configuration 9

6 Configuration

6.1 sffilter configuration

You can specify the packet source and the configuration file in command line.
sffilter [-hv] [-i interface] [-r inputfile1 [-r inputfile2 ...]]

[-w output] [-f bpffilter] [-c config]

options:
You have to select either network interface (-i) for online monitoring
or tcpdump packet traces (-r) for offline analysis.
-i interface network interface to be monitored
-r inputfile tcpdump-style packet dump trace. sffilter can process
multiple packet dump traces.
-w output dump packets into output in tcpdump-style format.
-f bpffilter tcpdump-style bpf filter.
-c config sffilter configuration file.
-h print help
-v verbose

sffilter configuration file is used to specify the following parameters.
internal_network: list of your local net address block. CIDR format, comma sepa-
rated. *NOTE: you have to configure this before starting Autograph
stat_report_interval: interval (second) to report SFP, scanner statistics if non-zero
value specified. sffilter will not report statistics if this value is zero. (default: 0)
live_server_heuristic: use a heuristic that does not count failed connection at-
tempts toward internal servers that were active for last server lifetime. This heuristic
helps tolerate temporary service failure or p2p application effect. (default: true)
server_lifetime: value used for live_server_heuristic. (default: 86400 = 24
hours)
flow_inactivity_timeout: flow inactivity timeout in second. If a connection is not
established before timeout, the connection is considered a failed connection attempts.
If a suspicious flow is idle for this timeout value, the flow is considered terminated and
sent to SFP. (default: 120)
scanner_lifetime: the lifetime of scanners (default: 86400 = 24hours)
s_thresh: s threshold. Minimum number of failed connections to detect a scanner.
(default: 2)
content_analysis: signature generation module. currently, only copp is supported.
(default: copp)
sfp_path: directory name used for SFP. It should be same as sfp_path specified in
copp configuration. (default: "suspect pool")
t_thresh: lifetime of suspicious flows. Suspicious flows will be removed from SFP
t threshold seconds after captured. (default: 1800 = 30min)
theta_thresh: theta parameter. Minimum number of suspicious flows in SFP to
trigger signature generation for the port. (default: 5)

Chapter 6: Configuration 10

analysis_interval: minimum interval to request signature generation. If sffilter
requested the signature generation for the port less than analysis interval seconds ago,
suppress the request this time and wait for another chance. (default: 60 = 1min)

6.2 copp configuration

copp [-hv] [-c config]

options:
-c config copp configuration file.
-h print help
-v verbose

copp configuration file is used to specify the following parameters.
stat_report: will report content-prevalence histogram snapshot(default: false)
max_block_size: COPP parameter to specify maximum content-block size in bytes
(default: 1024)
avg_block_size: COPP parameter to specify average content-block size in bytes (de-
fault: 64)
min_block_size: COPP parameter to specify minimum content-block size in bytes
(default: 32)
window_size: COPP parameter to specify the sliding window size in bytes (default:
16)
breakmark: COPP parameter to specify the breakmark value (default: 0x7)
target_fraction: w parameter to indicate target coverage of generated signatures.
shoule be between 0-1. (default: 0.95)
source_count: minimum number of external sources for a content-block to be selected
as a signature. (default: 2)
min_prevalence: p parameter to specify the minimum occurence of a content-block
to be selected as a signature. (default: 5)
max_sig_num: maximum number of signatures copp can generate for each iteration.
(default: 30)
signature_out: copp will output generated signatures in this file. (default: "sig.out"
in current directory)
blacklist: file of signature blacklist. If not specified, copp does not use signature
blacklisting. See Section 6.3 [signature blacklist], page 10 for more detail. (default:
signature blacklist is not used)
sfp_path: directory name used for SFP. It should be same as sfp_path specified in
sffilter configuration. (default: "suspect pool")

6.3 signature blacklist

Autograph generates signatures based on content-prevalence analysis, and thus it possi-
bly reports signatures that are not specific or sensitive. Signature blacklisting is one way to
prevent Autograph from generating bad signatures. Make your own signature blacklist file

Chapter 6: Configuration 11

that lists signatures Autograph can generate but not good signatures. The format of the
blacklist is exactly the same as Autograph’s signature output (bro-style signature format).
That means, you can generate a signature blacklist by editing the output of Autograph from
training period. Then, specify the blacklist file name in copp configuration file (blacklist
parameter). Autograph will ignore all the content blocks that are substrings of one of the
blacklist patterns.

Here is an example signature blacklist:
signature blacklist0 {

header ip[9:1] == 6
payload /.*\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70/
event "Signature : An Example Signature Black List Entry"
}

Index 12

Index

A
architecture . 7
autograph. 5
autograph output . 6
Automated Worm Signature Detection 1

C
configuration . 9
content-prevalence analysis . 7
copp . 7
copp configuration . 10
current features . 1
current limitations . 1

D
download . 4

F
flow_inactivity_timeout . 7

H
hardware requirements . 3
Hardware requirements . 3

I
Install . 4
Installation instruction . 4

L
live_server_heuristic . 7

M
mailing list . 2

N
network tap . 3

Q
quick configuration . 5
quick start . 5

S
s_thresh . 7
scanner_lifetime . 7
server_lifetime . 7
sffilter . 7
sffilter configuration . 9
signature blacklist . 7, 10
software requirements . 3
Software requirements . 3
start autograph . 5
stop autograph . 6
suspicious flow selection . 7

T
t_thresh . 7
theta_thresh . 7

W
website . 2

	Autograph Introduction
	What is Autograph?
	Features and Limitations
	More information

	Requirements
	Network Tap
	Hardware and Software Requirement

	Installation
	Download
	Install

	Getting Started
	Quick Configuration
	Start/Stop Autograph
	Autograph Output

	Autograph Overview
	Suspicious flow selection (sffilter)
	Content-prevalence analysis (copp)

	Configuration
	sffilter configuration
	copp configuration
	signature blacklist

	Index

