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Abstract

This paper discusses the challenges in computer systems research posed by the emerging field of pervasive
computing. It first examines the relationship of this new field to its predecessors: distributed systems and
mobile computing. It then identifies four new research thrusts: effective use of smart spaces, invisibility,
localized scalability, and masking uneven conditioning. Next, it sketches a couple of hypothetical pervasive
computing scenarios, and uses them to identify key capabilities missing from today’s systems. The paper
closes with a discussion of the research necessary to devel op these capabilities.

1. Introduction

*“The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are
indistinguishable from it.”” So began Mark Weiser's seminal 1991
paper [44] that described his vision of ubiquitous computing, now
also called pervasive computing. The essence of that vision was the
creation of environments saturated with computing and
communication capability, yet gracefully integrated with human
users. When articulated, this was avision too far ahead of its time
— the hardware technology needed to achieve it simply did not
exist. Not surprisingly, the implementation attempted by Weiser
and his colleagues at Xerox PARC fell short.

After a decade of hardware progress, many critical elements of
pervasive computing that were exotic in 1991 are now viable
commercia products: handheld and wearable computers; wireless
LANS; and devices to sense and control appliances. We are now
better positioned to begin the quest for Weiser's vision. Pervasive
computing projects have emerged at maor universities and in
industry.  Examples at universities include Project Aura at
Carnegie Mellon, Endeavour at UC Berkeley, Oxygen at MIT, and
Portalano at Washington. Industry examples include work at
AT&T Research in Cambridge, U.K. and at the IBM TJ Watson
Research Center. Each of these projects addresses a different mix
of issues in pervasive computing, and a different blend of near-
term and far-term goas. Together, they represent a broad
communal effort to make pervasive computing areality.

The goal of this paper is to help us understand the challenges in
computer systems research posed by pervasive computing. We
begin by examining its relationship to the closely-related fields of
distributed systems and mobile computing. Next, we sketch two
pervasive computing scenarios, and ask why they are fiction rather
than fact today. From that starting point, we delve deeper into
some key research problems. To preserve focus on computer
systems issues, we avoid digressions into other areas important to
pervasive computing such as human-computer interaction, expert
systems and software agents.

2. Related Fields

Pervasive computing represents a major evolutionary step in a
line of work dating back to the mid-1970's. Two distinct earlier
steps in this evolution are distributed systems and mobile
computing. Some of the technica problems in pervasive
computing correspond to problems already identified and studied
earlier in the evolution. In some of those cases, existing solutions
apply directly; in other cases, the demands of pervasive computing
are sufficiently different that new solutions have to be sought.
There are also new problems introduced by pervasive computing
that have no obvious mapping to problems studied earlier. In the
rest of this section, we try to sort out this complex intellectua
relationship and to develop a taxonomy of issues characterizing
each phase of the evolution.

2.1. Distributed Systems

The field of distributed systems arose at the intersection of
personal computers and local area networks. The research that
followed from the mid-1970's through the early 1990's created a
conceptual framework and algorithmic base that has proven to be
of enduring value in al work involving two or more computers
connected by a network — whether mobile or static, wired or
wireless, sparse or pervasive. Thisbody of knowledge spans many
areas that are foundational to pervasive computing and is now well
codified in textbooks [8, 19, 20]:

e remote communication, including protocol layering,

remote procedure call [3], the use of timeouts, and the use
of end-to-end arguments in placement of functionality [28].

« fault tolerance, including atomic transactions, distributed
and nested transactions, and two-phase commit [13].

« high availability, including optimistic and pessimistic
replica control [9], mirrored execution [4], and optimistic
recovery [37].

e remote information access, including caching, function
shipping, distributed file systems, and distributed
databases [30].

« security, including encryption-based mutual authentication
and privacy [23].



2.2. Mobile Computing

The appearance of full-function laptop computers and wireless
LANSs in the early 1990s led researchers to confront the problems
that arise in building a distributed system with mobile clients. The
field of mobile computing was thus born. Although many basic
principles of distributed system design continued to apply, four key
constraints of mobility forced the development of specialized
techniques. These constraints are: unpredictable variation in
network quality, lowered trust and robustness of mobile elements,
limitations on local resources imposed by weight and size
constraints, and concern for battery power consumption [31].

Mobile computing is till a very active and evolving field of
research, whose body of knowledge awaits codification in
textbooks. The results achieved so far can be grouped into the
following broad areas:

* mobile networking, including Mobile 1P[2], ad hoc

protocols[27], and techniques for improving TCP
performance in wireless networks[1, 5].

e mobile information access, including disconnected
operation [17], bandwidth-adaptive file access[21], and
selective control of data consistency [38, 39].

« support for adaptative applications, including transcoding
by proxies[12] and adaptive resource management [24].

* systemlevel energy saving techniques, such as energy-

aware  adaptation [11], variable-speed processor
scheduling [45], and energy-sensitive memory

management [18].

« location sensitivity, including location sensing [42, 43] and
location-aware system behavior [32, 35, 41].

2.3. Pervasive Computing

Earlier in this paper, we characterized a pervasive computing
environment as one saturated with computing and communication
capability, yet so gracefully integrated with users that it becomes a
‘‘technology that disappears.’”’ Since mation is an integral part of
everyday life, such atechnology must support mobility; otherwise,
a user will be acutely aware of the technology by its absence when
he moves. Hence, the research agenda of pervasive computing
subsumes that of mobile computing, but goes much further.
Specifically, pervasive computing incorporates four additional
research thrustsinto its agenda, asillustrated by Figure 1.

2.3.1. Effective Use of Smart Spaces

The first research thrust is the effective use of smart spaces. A
space may be an enclosed area such as a meeting room or corridor,
or it may be a well-defined open area such as a courtyard or a
quadrangle. By embedding computing infrastructure in building
infrastructure, a smart space brings together two worlds that have
been digoint until now [16]. The fusion of these worlds enables
sensing and control of one world by the other. A simple example
of this is the automatic adjustment of heating, cooling and lighting
levels in a room based on an occupant’s electronic profile.
Influence in the other direction is aso possible — software on a
user’'s computer may behave differently depending on where the
user is currently located. Smartness may also extend to individual
objects, whether located in a smart space or not.

2.3.2. Invisibility

The second thrust isinvisibility. The ideal expressed by Weiser is
compl ete disappearance of pervasive computing technology from a
user’s conciousness. In practice, a reasonable approximation to
this ideal is minimal user distraction. If a pervasive computing
environment continuously meets user expectations and rarely
presents him with surprises, it alows him to interact amost at a
subconcious level [46]. At the same time, a modicum of
anticipation may be essential to avoiding a large unpleasant
surprise later — much as pain aerts a person to a potentially
serious future problem in a normally-unnoticed body part.

2.3.3. Localized Scalability

The third research thrust is localized scalability. As smart spaces
grow in sophistication, the intensity of interactions between a
user’s persona computing space and his surroundings increases.
This has severe bandwidth, energy and distraction implications for
awireless mobile user. The presence of multiple users will further
complicate this problem. Scalability, in the broadest sense, is thus
a critical problem in pervasive computing. Previous work on
scalability has typically ignored physical distance — a web server
or file server should handle as many clients as possible, regardless
of whether they are located next door or across the country. The
situation is very different in pervasive computing. Here, the
density of interactions has to fall off as one moves away —
otherwise both the user and his computing system will be
overwhelmed by distant interactions that are of little relevance.
Although a mobile user far from home will still generate some
distant interactions with sites relevant to him, the preponderance of
hisinteractions will be local.

Like the inverse square laws of nature, good system design has
to achieve scalability by severely reducing interactions between
distant entities. This directly contradicts the current ethos of the
Internet, which many believe heralds the *‘ death of distance.”’

2.3.4. Masking Uneven Conditioning

The fourth thrust is the development of techniques for masking
uneven conditioning of environments. The rate of penetration of
pervasive computing technology into the infrastructure will vary
considerably depending on many non-technical factors such as
organizational structure, economics and business models. Uniform
penetration, if it is ever achieved, is many years or decades away.
In the interim, there will persist huge differences in the
‘‘smartness’ of different environments — what is available in a
well-equipped conference room, office, or classroom may be more
sophisticated than in other locations. This large dynamic range of
‘‘smartness’’ can be jarring to a user, detracting from the goal of
making pervasive computing technology invisible.

One way to reduce the amount of variation seen by a user is to
have his personal computing space compensate for ‘‘dumb’’
environments. As a trivial example, a system that is capable of
disconnected operation is able to mask the absence of wireless
coverage in its environment. Complete invisibility may be
impossible, but reduced variability iswell within our reach.
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This figure shows how research problems in pervasive computing relate to those in mobile computing and distributed systems. New problems are encountered as one
moves from left to right in this figure. In addition, the solution of many previously-encountered problems becomes more complex. As the modulation symbols suggest,
this increase in complexity is multiplicative rather than additive — it is very much more difficult to design and implement a pervasive computing system than a simple
distributed system of comparable robustness and maturity. Note that this figure describes logical relationships, not temporal ones. Although the evolution of research
effort over time has loosely followed this picture, there have been cases where research effort on some aspect of pervasive computing began relatively early. For
example, work on smart spaces began in the early 1990’ s and proceeded relatively independently of work in mobile computing.

Figure 1: Taxonomy of Computer Systems Research Problems in Pervasive Computing

3. Example Scenarios

What would it be like to live in a world with pervasive
computing? To help convey the ‘‘look and feel’’ of such aworld,
we sketch two hypothetical scenarios below. We have deliberately
chosen scenarios that appear feasible in just a few years. These
examples use Aura as the pervasive computing system, but the
conceptsillustrated are of broad relevance.

3.1. Scenario 1

Jane is at Gate 23 in the Pittsburgh airport, waiting for her
connecting flight. She has edited many large documents, and
would like to use her wireless connection to e-mail them.
Unfortunately, bandwidth is miserable because many passengers
at Gates 22 and 23 are surfing the web.

Aura observes that at the current bandwidth Jane won't be able to
finish sending her documents before her flight departs. Consulting
the airport’s network weather service and flight schedule service,
Aura discovers that wireless bandwidth is excellent at Gate 15,
and that there are no departing or arriving flights at nearby gates
for half an hour. A dialog box pops up on Jane's screen
suggesting that she go to Gate 15, which is only three minutes
away. It also asks her to prioritize her e-mail, so that the most
critical messages are transmitted first. Jane accepts Aura’s advice
and walks to Gate 15. She watches CNN on the TV there until
Aura informs her that it is close to being done with her messages,
and that she can start walking back. The last message is
transmitted during her walk, and she is back at Gate 23 in time for
her boarding call.

3.2. Scenario 2

Fred is in his office, frantically preparing for a meeting at which
he will give a presentation and a software demonstration. The
meeting room is a ten-minute walk across campus. It is time to
leave, but Fred is not quite ready. He grabs his PalmxXIl wireless
handheld computer and walks out of the door. Aura transfers the
state of his work from his desktop to his handheld, and allows him
to make his final edits using voice commands during his walk.
Aura infers where Fred is going from his calendar and the campus
location tracking service. It downloads the presentation and the
demonstration software to the projection computer, and warms up
the projector.

Fred finishes his edits just before he enters the meeting room. As
he walks in, Aura transfers his final changes to the projection
computer. As the presentation proceeds, Fred is about to display a
slide with highly sensitive budget information. Aura senses that
this might be a mistake: the room’s face detection and recognition
capability indicates that there are some unfamiliar faces present.
It therefore warns Fred. Realizing that Aura is right, Fred skips
the slide. He moves on to other topics and ends on a high note,
leaving the audience impressed by his polished presentation.

3.3. Missing Capabilities

These scenarios embody many key ideas in pervasive computing.
Scenario 1 shows the importance of proactivity: Jane is able to
complete her e-mail transmission only because Aura had the
foresight to estimate how long the whole process would take. She
is able to begin walking back to her departure gate before



transmission completes because Aura looks ahead on her behalf.
The scenario also shows the importance of combining knowledge
from different layers of the system. Wireless congestion is a
low-level system phenomenon; knowledge of boarding time is an
application or user-level concept. Only by combining these
disparate pieces of knowledge can Aura help Jane. The scenario
also shows the value of a smart space. Aura is able to obtain
knowledge of wireless conditions at other gates, flight
arrival/departure times and gates, and distance between gates only
because the environment provides these services.

Scenario 2 illustrates the ability to move execution state
effortlesdy across diverse platforms — from a desktop to a
handheld machine, and from the handheld to the projection
computer. Self-tuning, or automatically adjusting behavior to fit
circumstances, is shown by the ability to edit on the handheld
using speech input rather than keyboard and mouse. The scenario
embodies many instances of proactivity: inferring that Fred is
headed for the room across campus, warming up the projector,
transferring the presentation and demonstration, anticipating that
the budget slide might be displayed next, and sensing danger by
combining this knowledge with the inferred presence of strangers
in the room. The value of smart spaces is shown in many ways:
the location tracking and online calendar services are what enable
Aura to infer where Fred is heading; the software-controlled
projector enables warmup ahead of time; the camera-equipped
room with continuous face recognition is key to warning Fred
about the privacy violation he is about to commit.

Perhaps the biggest surprise in these scenarios is how simple and
basic all the component technologies are.  The hardware
technologies (laptops, handhelds, wireless communication,
software-controlled appliances, room cameras, and so on) are all
here today. The component software technologies have also been
demonstrated: location tracking, face recognition, speech
recognition, online calendars, and so on.

Why then do these scenarios seem like science fiction rather than
reality today? The answer lies in the fact that the whole is much
greater than the sum of its parts. In other words, the real research
is in the seamless integration of component technologies into a
system like Aura. The difficult problems lie in architecture,
component synthesis and system-level engineering. We elaborate
on some of these problems in the next section.

4. Drilling Down

Practica realization of pervasive computing will require us to
solve many difficult design and implementation problems.
Building on the discussion in earlier sections, we now look at some
of these problems at the next level of detail. Our goal is only to
convey an impressionistic picture of the road ahead. We make no
clam of completeness or exclusiveness — this specific set of
topics is merely a sampling of the problem space, presented in no
particular order.

In this discussion, we assume that each user is immersed in a
personal computing space that accompanies him everywhere and
mediates all interactions with the pervasive computing elements in
his surroundings. This personal computing space is likely to

implemented on a body-worn or handheld computer (or a
collection of these acting as asingle entity). We refer to this entity
asa‘‘client’” of its pervasive computing environment, even though
many of its interactions may be peer-to-peer rather than strictly
client-server. As indicated by the discussion below, the client
needs to be quite sophisticated and, hence, complex. Figure 2,
illustrating the structure of an Aura client, gives a concrete
example of this complexity.
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This figure shows the components of an Aura client and their logica
relationships.  The text in italics indicates the role played by each
component. Coda and Odyssey were created prior to Aura, but are being
modified substantially to meet the demands of pervasive computing. In the
case of Odyssey, these changes are sufficiently extensive that they will
result in Chroma, a replacement. Other components, such as Prism and
Spectra, are being created specificaly for use in Aura  Additiona
components are likely to be added over time since Auraisrelatively early in
its design at the time of this writing. Server and infrastructure support for
Auraare not shown here.

Figure2: Structure of an Aura Client

4.1. User Intent

For proactivity to be effective, it is crucial that a pervasive
computing system track user intent. Otherwise, it will be amost
impossible to determine which system actions will help rather than
hinder the user. For example, suppose a user is viewing video over
a network connection whose bandwidth suddenly drops. Should
the system (&) reduce the fidelity of the video, (b) pause briefly to
find another higher-bandwidth connection, or (c) advise the user
that the task can no longer be accomplished? The correct choice
will depend on what the user is trying to accomplish.

Today’s systems are poor at capturing and exploiting user intent.
On the one hand are generic applications that have no idea what
the user is attempting to do, and can therefore offer little support
for adaptation and proactivity. On the other hand are applications
that try to anticipate user intent but do so very badly — gimmicks
like the Microsoft ‘‘paperclip’’ are often more annoying than
helpful. The need to capture user intent generates a number of
important research questions:

« Can user intent be inferred, or does it have to be explicitly

provided? In the latter case, is it statically specified (from

a file, for example) or obtained on demand through
dynamic interactions?

« How is user intent represented internally? How rich must
this information be for it to be useful? When and how is it



updated? How do different layers of a system access this
knowledge?

» How does one characterize accuracy of knowledge in this
area? |sincomplete or imprecise knowledge of user intent
still useful? At what level of uncertainty is it better to
ignore such knowledge in making decisions?

» Will the attempt to obtain intent place an undue burden on
the user?  Will it hurt usability and performance
unacceptably? |s the benefit worth the cost? How does
one quantify this benefit?

4.2. Cyber Foraging

The need to make mobile devices smaller, lighter and have
longer battery life means that their computing capabilities have to
be compromised. But meeting the ever-growing expectations of
mobile users may require computing and data manipulation
capabilities well beyond those of a lightweight mobile computer
with long battery life. Reconciling these contradictory
requirementsis difficult.

Cyber foraging, construed as *‘living off the land’’, may be an
effective way to deal with this problem. The idea is to
dynamically augment the computing resources of awireless mobile
computer by exploiting wired hardware infrastructure. As
computing becomes cheaper and more plentiful, it makes
economic sense to ‘‘waste’’ computing resources to improve user
experience. Desktop computers at discount stores already sell
today for afew hundred dollars, with prices continuing to drop. In
the forseeable future, we envision public spaces such as airport
lounges and coffee shops being equipped with compute servers or
data staging servers for the benefit of customers, much as table
lamps are today. These will be connected to the wired Internet
through high-bandwidth networks. When hardware in the wired
infrastructure plays this role, we call it a surrogate of the mobile
computer it is temporarily assisting.

We envision a typica scenario as follows. When a mobile
computer enters a neighborhood, it first detects the presence of
potential surrogates and negotiates their use. Communication with
a surrogate is via short-range wireless peer-to-peer technology,
with the surrogate serving as the mobile computer’s networking
gateway to the Internet. When an intensive computation accessing
a large volume of data has to be performed, the mobile computer
ships the computation to the surrogate; the latter may cache data
from the Internet on its local disk in performing the computation.
Alternatively, the surrogate may have staged data ahead of timein
anticipation of the user’s arrival in the neighborhood. In that case,
the surrogate may perform computations on behalf of the mobile
computer or merely service its cache misses with low latency by
avoiding Internet delays. When the mobile computer leaves the
neighborhood, its surrogate bindings are broken, and any data
staged or cached on its behalf are discarded.

Cyber foraging opens up many important research questions.
Here are some examples:

» How does one discover the presence of surrogates? Of the
many proposed service discovery mechanisms such as
JINI, UPnP, and BlueTooth proximity detection, which is
best suited for this purpose? Can one build a discovery

mechanism that subsumes all
flexibility?

of them for greatest

« How does one establish an appropriate level of trust in a
surrogate? What are useful levels of trust in practice?
How applicable and useful is the concept of caching
trust [29]? Can one amortize the cost of establishing trust
across many surrogates in a neighborhood?

* How is load balancing on surrogates done? |Is surrogate
alocation based on an admission control approach, or a
best-effort approach? How relevant is previous work on
load balancing on networks of workstations?

 In typical situations, how much advance notice does a
surrogate need to act as an effective staging server with
minimal delay? Isthison the order of seconds, minutes or
tens of minutes? What implications does this requirement
have for the other components of a pervasive computing
system?

* What are the implications for scalability? How dense does
the fixed infrastructure have to be to avoid overloads
during periods of peak demand?

* What is the system support needed to make surrogate use
seamless and minimally intrusive for a user? Which are
the components of this support that must be provided by
the mobile client, and which by the infrastructure?

4.3. Adaptation Strategy

Adaptation is necessary when there is a significant mismatch
between the supply and demand of a resource. The resource in
question may be wireless network bandwidth, energy, computing
cycles, memory, and so on. There are three aternative strategies
for adaptation in pervasive computing.

First, a client can guide applications in changing their behavior
so that they use less of a scarce resource. This change usually
reduces the user-perceived quality, or fidelity, of an application.
Odyssey [11, 24] is an example of a system that uses this strategy.

Second, a client can ask the environment to guarantee a certain
level of a resource. This is the approach typicaly used by
reservation-based QoS systems[22]. From the viewpoint of the
client, this effectively increases the supply of a scarce resource to
meet the client’s demand.

Third, a client can suggest a corrective action to the user. If the
user acts on this suggestion, it is likely (but not certain) that
resource supply will become adequate to meet demand. An
example of this approach was described earlier in the paper: in
Scenario 1, Aura advised Jane to walk to Gate 15 in order to obtain
adequate wireless bandwidth. While conceptualy promising, no
real system has implemented this approach yet.

All three strategies are important in pervasive computing. The
existence of smart spaces suggests that some of the environments
encountered by a user may be capable of accepting resource
reservations. At the same time, uneven conditioning of
environments suggests that a mobile client cannot rely solely on a
reservation-based strategy — when the environment is
uncooperative or resource-impoverished, the client may have no
choice but to ask applications to reduce their fidelities. Corrective
actions broaden the range of possibilities for adaptation by



involving the user, and may be particularly useful when lowered
fidelity is unacceptable.

Many questions remain to be answered:

» How does a client choose between adaptation strategies?
What factors should a good decision procedure take into
account? How should different factors be weighted? What
role, if any, should the user play in making this decision?
How can smooth and seamless transitions between
strategies be ensured as a user moves?

At first glance, it appears that the second strategy
(reservation-based QoS) is aways superior from the
viewpoint of the user, since he is neither required to accept
lower fidelity nor perform a corrective action. s this true
in al circumstances? What are the hidden costs and
‘‘gotchas,”’ if any, in awidely-deployed system?

How will the implementation of a smart space honor
resource reservations? What are the most appropriate
admission control policies when there are competing
requests from multiple clients? What resources beside
wireless network bandwidth is it meaningful and useful for
a smart space to reserve? What are the APIs and protocols
necessary to negotiate these reservations?

|s adaptation using corrective actions practically feasible?
Do users find such a strategy intrusive or annoying? What
is the best way to communicate potential corrective actions
to users? What are the programming models and APIs
necessary to support corrective actions? Can existing
applications use this approach? If so, how substantial are
the modifications to them?

What are the different ways in which fidelity can be
lowered for a broad range of applications? Are existing
APIs, such as that of Odyssey [24], adequate? How should
those APIs and programming models be revised in the light
of extensive usage experience? In particular, what is the
negative impact of lowered fidelity on users and how can
this be minimized?

4.4. High-level Energy Management

Sophisticated capabilities such as proactivity and self-tuning
increase the energy demand of software on a mobile computer in
one's personal computing space. At the same time, relentless
pressure to make such computers lighter and more compact places
severe restrictions on battery capacity. Thereis growing consensus
that advances in battery technology and low-power circuit design
cannot, by themselves, reconcile these opposing constraints — the
higher levels of the system must also be involved [10, 25].

How does one involve the higher levels of a system in energy
management? One example is energy-aware memory
management [18], where the operating system dynamicaly
controls the amount of physical memory that has to be refreshed.
Another example is energy-aware adaptation[11], where
individual applications switch to modes of operation with lower
fidelity and energy demand under operating system control. Many
research questions follow:

e In what other ways can the higher levels of a system

contribute to managing energy? What are the relative

strengths and weaknesses of these approaches? When
should one method be used in preference to another?

* How does high-level energy management impact the goal
of invisibility in pervasive computing? How intrusive or
distracting do users find such techniques?

e Can knowledge of user intent be exploited in energy
management? If so, how robust is this approach in the face
of imperfection in this knowledge?

« Can smart spaces and surrogates be used to reduce energy
demand on a mobile computer? What is the range of
possible approaches, and what are their relative merits?

« What is the role of remote execution in extending battery
life? Under what circumstances does its energy savings
exceed the energy cost of wireless communication? Can a
system predict these savings and costs accurately enough
in practice to make a significant difference?

4.5. Client Thickness

How powerful does a mobile client need to be for a pervasive
computing environment? In other words, how much CPU power,
memory, disk capacity and so on should it have? The answer will
determine many of the key constraints imposed on the hardware
design of the client. In trade press jargon, a thick client is a
powerful client, while athin client isaminimal one.

Thick clients tend to be larger, heavier, require a bigger battery,
and dissipate more heat — all negative factors from the viewpoint
of the user who has to carry or wear the client. Over time,
improvements in VLS| and packaging technology can reduce the
physical size and weight of a thick client. However, those
improvements will translate to an even smaller and lighter thin
client. For a mobile user, a client can never be too small, too light
or have too much battery life!

A wide range of feasible designs has been demonstrated. At one
extreme are ultrathin clients such as Infopad[6,40] and
SLIM [33]. These bare-bones devices are little more than high-
resolution displays connected through high-bandwidth wireless
links to nearby compute servers. At the other extreme are full-
function clients capable of standalone or disconnected operation.
Examples include the Navigator family of wearable
computers[34], and laptops running as clients of the Coda File
System [17]. Such designs can make use of wireless connectivity
when available, but are not critically dependent on it. Handheld
computers such as the PalmPilot represent design points in
between these extremes. They can operate in isolation, but run a
limited range of applications.

For a given application, the minimum acceptable thickness of a
client is determined by the worst-case environmental conditions
under which the application must run satisfactorily. A very thin
client suffices if one can always count on high-bandwidth, low-
latency wireless communication to nearby computing
infrastructure, and if batteries can be recharged or replaced easily.
If there exists even a single location visited by a user where these
assumptions do not hold, the client will have to be thick enough to
compensate at that location. This is especialy true for interactive
applications where crisp response is important.

With aclient of modest thickness, it may be possible to preserve
responsiveness by handling simple cases locally and relying on



remote infrastructure only for more compute-intensive situations.
Alternatively, it may be possible to execute part of the application
locally and then ship a much-reduced intermediate state over a
weak wireless link to a remote compute server for completion.
The hybrid mode of speech recognition in Odyssey [24] is an
example of this approach. Another approach would be for the
client to recognize that a key assumption is not being met, and to
alert the user with an intelligible message. The client could also
suggest possible corrective actions such as moving to a nearby
location that is known to be suitable for the application.

Uneven conditioning of environments implies that an extreme
thin-client approach will be unsatisfactory for pervasive computing
in the foreseeable future. At the same time, there is considerable
merit in not having to carry or wear a client thicker than absolutely
necessary. Many research questions follow from this tension:

» Can the concepts of client thickness and environmental
conditioning be quantified? Are there ‘‘sweet spots’ in
the design space where a modest increase in client
thickness yields considerable improvement in performance
and usability?

Can a proactive system aert a user in a timely manner
before he leaves a benign environment for aless hospitable
one? In that context, can an application be transparently
migrated from a thinner to a thicker client and vice versa?
What are the kinds of applications for which such
migration is feasible and useful? What is the impact on
usability?

Isit possible to build cost-effective modular computers that
can be physically reconfigured to serve as the optimal
mobile clients under diverse environmental conditions?
Can a proactive system advise a user to reconfigure when
appropriate? Knowing his travel plans, can such a system
guide him in configuring his system so that it is of
adeguate thickness at al times?

Can semi-portable infrastructure be carried with a user to
augment less hospitable environments? For example, in a
poorly conditioned environment, can a thin bodyworn
computer extend its capabilities by wireless access to a
full-function laptop brought by the user? Thisis analogous
to carrying both a briefcase and a wallet when you travel;
the briefcase is not physically on your person at al times,
but it is close enough to provide easy access to things too
large to fit in your wallet. |s this a usable and practical
strategy to cope with uneven conditioning?

4.6. Context Awareness

A pervasive computing system that strives to be minimally
intrusive has to be context-aware. In other words, it must be
cognizant of its user’s state and surroundings, and must modify its
behavior based on this information. A user’s context can be quite
rich, consisting of attributes such as physical location,
physiological state (such as body temperature and heart rate),
emotional state (such as angry, distraught, or calm), personal
history, daily behavioral patterns, and so on. |If a human assistant
were given such context, he or she would make decisions in a
proactive fashion, anticipating user needs. In making these
decisions, the assistant would typically not disturb the user at
inopportune moments except in an emergency. Can a pervasive
computing system emulate such a human assistant?

A key challenge is obtaining the information needed to function
in a context-aware manner. In some cases, the desired information
may aready be part of a user's personal computing space. For
example, that space may include schedules, personal calendars,
address books, contact lists, and to-do lists. More dynamic
information has to be sensed in rea time from the user's
environment. Examples of such information include position,
orientation, the identities of people nearby, localy observable
objects and actions, and emotional and physiologica state.

Implementing a context-aware system requires many issues to be

addressed. For example:

e How is context represented internaly? How is this
information combined with system and application state?
Where is context stored? Does it reside locally, in the
network, or both? What are the relevant data structures
and algorithms?

e How frequently does context information have to be
consulted? What is the overhead of taking context into
account? What techniques can one use to keep this
overhead low?

* What are the minimal services that an environment needs
to provide to make context-awareness feasible? What are
reasonable fallback positions if an environment does not
provide such services? Is historical context useful?

« What are the relative merits of different location-sensing
technologies? Under what circumstances should one be
used in preference to another? Should location information
be treated just like any other context information, or should
it be handled differently? Ishistorical context useful?

4.7. Balancing Proactivity and Transparency

Proactivity is a double-edged sword. Unless carefully designed,
a proactive system can annoy a user and thus defeat the goal of
invisibility. How does one design a system that strikes the proper
balance at al times? Self-tuning can be an important tool in this
effort. A mobile user's need and tolerance for proactivity are
likely to be closely related to his level of expertise on a task and
his familiarity with his environment. A system that can infer these
factors by observing user behavior and context is better positioned
to strike the right balance.

Historicaly, the ideal in system design has been transparency.
For example, caching is attractive in distributed file systems
because it is completely transparent. Unfortunately, servicing a
cache miss on a large file over a low-bandwidth wireless network
takes so long that most users would rather be asked first whether
they redlly need the file. However, a flurry of such interactions
can overwhelm the user. Coda suggests a way to resolve this
dilemma[21]. On a cache miss, the system consults an internally-
maintained user patience model to predict whether the user will
respond positively to a fetch request. If this appears likely, the
user interaction is suppressed and the fetch is handled
transparently.

Many subtle problems arise in designing a system that walks the
fine line between annoying proactivity and inscrutable
transparency. For example:

e How are individua user preferences and tolerances



specified and taken into account? Are these static or do
they change dynamically?

« What cues can such a system use to determine if it is
veering too far from balance? Is explicit interaction with
the user to obtain this information acceptable? Or, would
it be an annoyance too?

*Can one provide systematic design guidelines to
application designers to help in this task? Can one retrofit
balancing mechanisms into existing applications?

4.8. Privacy and Trust

Privacy, aready a thorny problem in distributed systems and
mabile computing, is greatly complicated by pervasive computing.
Mechanisms such as location tracking, smart spaces, and use of
surrogates imonitor user actions on an almost continuous basis. As
a user becomes more dependent on a pervasive computing system,
it becomes more knowledgeable about that user's movements,
behavior patterns and habits. Exploiting thisinformation is critical
to successful proactivity and self-tuning. At the same time, unless
use of this information is strictly controlled, it can be put to a
variety of unsavory uses ranging from targeted spam to blackmail.
Indeed, the potential for serious loss of privacy may deter
knowledgeable users from using a pervasive computing system

Greater reliance on infrastructure means that a user must trust
that infrastructure to a considerable extent. Conversely, the
infrastructure needs to be confident of the user’'s identity and
authorization level before responding to his requests. It is a
difficult challenge to establish this mutua trust in a manner that is
minimally intrusive and thus preserves invisibility.

Privacy and trust are likely to be enduring problems in pervasive
computing. Many research questions follow. For example:

* How does one strike the right balance between seamless
system behavior and the need to alert users to potential loss
of privacy? What are the mechanisms, techniques and
design principles relevant to this problem? How often
should the system remind a user that his actions are being
recorded? When and how can a user turn off monitoring in
asmart space?

What are the authentication techniques best suited to
pervasive computing? Are password-based challenge-
response protocols such as Kerberos[36] adequate or are
more  exotic  technigues such as  biometric
authentication [15] necessary? What role, if any, can smart
cards[14] play?

How does one express generic identities in access control ?
For example, how does one express security constraints
such as ‘‘Only the person currently using the projector in
this room can set its lighting level?”  Or, “‘Only
employees of our partner companies can negotiate QoS
propertiesin this smart space?’

4.9. Impact on Layering

A recurring theme in the earlier sections of this paper has been
the merging of information from diverse layers of a system to
produce an effective response. For example, Scenario 1 showed
the value of combining low-level resource information (network
bandwidth) with high-level context information (airport gate

information).  Proactivity and adaptation based on corrective
actions seem to imply exposure of much more information across
layersthan istypical in systemstoday.

Layering cleanly separates abstraction from implementation and
is thus consistent with sound software engineering. Layering is
also conducive to standardization since it encourages the creation
of modular software components. Deciding how to decompose a
complex system into layers or modules is nontrivial, and remains
very much an art rather than a science. The two most widely-used
guidelines for layering are Parnas principle of information
hiding [26] and Saltzer et a’s end-to-end principle [28]. However,
these date back to the early 1970's and early 1980's respectively,
long before pervasive computing was conceived. Many research
questions follow:

*« How can the benefits of layering be preserved while

accomodating the needs of pervasive computing? What is

the impact of these accomodations on efficiency and
maintai nability?

* Are existing layers best extended for pervasive computing
by broadening their primary interfaces or by creating
secondary interfaces (such as the SNMP network
management interface [7])?

« When creating a new layer, are there systematic guidelines
we can offer to ensure compatibility with the needs of
pervasive computing? How much harder isit to design and
implement such alayer?

5. Conclusion

Pervasive computing will be a fertile source of challenging
research problems in computer systems for many years to come.
Solving these problems will require us to broaden our discourse on
some topics, and to revisit long-standing design assumptions in
others. We will also have to address research challenges in areas
outside computer systems. These areas include human-computer
interaction (especially multi-modal interactions and human-centric
hardware designs), software agents (with specific relevance to
high-level proactive behavior), and expert systems and artificial
intelligence (particularly in the areas of decision making and
planning). Capabilities from these areas will need to be integrated
with the kinds of computer systems capabilities discussed in this
paper. Pervasive computing will thus be the crucible in which
many disjoint areas of research are fused.

When describing his vision, Weiser was fully aware that
attaining it would require tremendous creativity and effort by many
people, sustained over many years. The early decades of the 21st
century will be a period of excitement and ferment, as new
hardware technologies converge with research progress on the
many fundamental problems discussed in this paper. Like the
Frontier of the American West in the early 19th century, pervasive
computing offers new beginnings for the adventurous and the
restless — arich open space where the rules have yet to be written
and the borders yet to be drawn.
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