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ABSTRACT
It has long been considered a desirable goal to be able to

construct an intelligible speech signal merely by observing
the talker in the act of speaking. Past methods at performing

this have been based on camera-based observations of the

talker’s face, combined with statistical methods that infer the

speech signal from the facial motion captured by the camera.

Other methods have included synthesis of speech from mea-

surements taken by electro-myelo graphs and other devices

that are tethered to the talker – an undesirable setup. In this

paper we present a new device for synthesizing speech from

characterizations of facial motion associated with speech –

a Doppler sonar. Facial movement is characterized through

Doppler frequency shifts in a tone that is incident on the

talker’s face. These frequency shifts are used to infer the un-

derlying speech signal. The setup is farfield and untethered,

with the sonar acting from the distance of a regular desktop

microphone. Preliminary experimental evaluations show that

the mechanism is very promising – we are able to synthesize

reasonable speech signals, comparable to those obtained from

tethered devices such as EMGs.

Index Terms— Speech synthesis

1. INTRODUCTION

It has long been considered a desirable goal to be able to con-

struct an intelligible speech signal merely by observing the

talker in the act of speaking. Commonly, the act of observ-

ing a talker has been interpreted as one of capturing images

of the talker’s face. The video may then be decoded into a

speech signal [1]. More commonly, observation of speech has

been performed with tethered devices, such as electro-myelo

graphs (EMG) [2], electromagnetic articulographs (EMA), or

even sensors to detect brain activity. All of these signals have

been demonstrated to carry sufficient information to generate

speech. Regardless, devices that require tethering of wires

or sensors to a talker’s person are unlikely to be considered

desirable. Other sensors such as Radars that capture artic-

ulator dynamics [3] have also been proposed as observation

mechanisms; however the information they attempt to cap-

ture is highly specific, namely articulator configurations, and

the setup is restrictive on the speaker and can become very

expensive.

In this paper we propose to use a completely different de-

vice to capture movements of a talker’s face, that could then

be converted to speech: an acoustic Doppler sensor (ADS).

The ADS is an inexpensive far-field sensor that can obtain

measurements of movements of a talker’s face. The device

consists of a rather simple setup including an ultrasound emit-

ter and an ultrasound sensor that is tuned to the transmitted

frequency. An ultrasound tone output by the emitter is re-

flected from the talker’s face. Movements of the talker’s face

impart Doppler frequency shifts to the reflected signal. The

reflected “Doppler” signal now contains a spectrum of fre-

quencies that represent the motion of the speaker’s cheeks,

lips, tongue, jaw, etc. The pattern of movements of facial

muscles is indicative of the sound generated and may be used

to infer the actual speech signal. Ultrasound Doppler signa-

tures from the ADS have previously been used successfully

for voice activity detection [4], speaker identification [5] and

even speech recognition [6, 7]. Here we show that they can

be used to synthesize speech as well.

The Doppler sensor is different in nature from other non-

tethered “observational” sensors used in this context in the

past. Cameras, radar-like devices and ultra-sound sensors

have typically been used to capture positional information,

either in the form of images or in the form of reflection de-

lays for pulsed ultrasound bursts. The ADS on the other hand

captures velocity information. The Doppler frequency shifts

in the signal represent velocities of facial components. The

spectrum of the Doppler signal may hence be viewed as a ve-
locity spectrum of the face.

Our basic approach is to use techniques from Voice Trans-

formation (VT) to convert the doppler data to features that

can be used to synthesize speech. The original goal of VT

was to map speech from one person’s identity to another’s [8].

Viewed more generally, VT can be seen as a technique to map

correlated features to features that can be used to synthesize
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Fig. 1. The Doppler-augmented microphone used in our ex-

periments. The two devices taped to the sides of the central

audio microphone are a high-frequency emitter and a high-

frequency sensor.

speech. This approach has been used to synthesize speech

from Electro Magnetic Articulograph (EMA) data [9], Non-

Audible Murmur (NAM) data [10], and surface Electrmyog-

raphy (EMG) [2].

It is not clear that the VT method is sufficient to derive

information from the Doppler signal. The frequency shifts

resulting from facial movements are proportional to the ve-

locity of facial features and are very small, often below the

resolution of a regular DFT. Nevertheless, our experiments

show that we are able to derive sufficient information from

the Doppler signals using conventional spectral analysis to

be able to synthesize reasonable speech signals out of the

Doppler measurements, albeit thus far only in a speaker-

specific manner.

2. THE ACOUSTIC DOPPLER SENSOR

Figure 1 shows the acoustic Doppler sodar augmented micro-

phone that we have used in our work. It has three compo-

nents. The central component is a conventional acoustic mi-

crophone. To one side of it is a ultra-sound emitter that emits

a 40Khz tone. To the other side is a high-frequency transducer

(receiver) that is tuned to capture signals around 40Khz. The

emitter and transmitter are well-aligned, and placed directly

pointed to the mouth. Both the emitter and receiver have a

diameter that is approximately equal to the wavelength of the

emitted 40kHz tone, and thus have a beamwidth of about 60o,

making them quite directional. Signals emitted by the 40Khz

transmitter are reflected by the face and captured by the re-

ceiver. It must be noted that the receiver also captures any

background noise; however these are significantly attenuated

with respect to the level of the reflected Doppler signal in

most standard operating conditions.

The cost of the entire setup shown in the Figure, not

counting the microphone, is less than $20 using off-the-shelf

components. The microphone was included in our setup in

order to be able to record training data required by the tech-

nique outlined in Section 4. The transmission and capture

of the Doppler signal can be performed concurrently with

that of the acoustic signal by a standard stereo sound card.

Since the high-frequency receiver is highly tuned and has a

bandwidth of only about 4Khz, the principle of band-pass

sampling may be applied, and the signal need not be sampled

at more than 12Khz. In practice we sampled both audio and

Doppler at 96kHz. The Doppler signals were heterodyned

down by 36kHZ, such that the carrier frequency is shifted to

4kHz, and both speech and ultrasound were resampled at 16

kHz.

3. THE DOPPLER SIGNAL

The Doppler sonar operates on the Doppler’s effect, whereby

the frequency perceived by a listener who is in motion rela-

tive to the signal emitter is different from that emitted by the

source. Specifically if the source emits a frequency f that is

reflected by an object moving with velocity v with respect to

the transmitter, then the reflected signal sensed at the emitter

f̂ is given by f̂ = (vs + v)/(vs − v)f , where vs is the veloc-

ity of the sound in the medium. If the signal is reflected by

multiple objects moving at different velocities then multiple

frequencies will be sensed at the receiver.

The human face is an articulated object with multiple

components capable of moving at different velocities. When

a person speaks the articulators including but not limited to

the lips, tongue, jaw cheeks etc. move with velocities that

depend on facial construction and are typical of the speaker.

The ultrasonic signal reflected off the face of a subject has

multiple frequencies each associated with one of the mov-

ing components. Figure 2 shows a typical Doppler signal

captured by the receiver on our Doppler sensor. The speech,

the corresponding Doppler signal, and the spectrograms of

both are all shown. We note that the spectral information in

the Doppler signal is has very narrow spread and is hard to

resolve. This is what we must obtain cues from to synthesize

speech.

Fig. 2. A speech signal and its spectrogram, and the corre-

sponding Doppler signal and its spectrogram. For synthesis

from Doppler signals the spectrogram of panel 2 must be es-

timated from that in panel 4.
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4. SYNTHESIZING SPEECH FROM DOPPLER
SIGNALS

The transformation system used to obtain speech from Doppler

signals is based on modified versions of voice-transformation

tools that are freely available from the FestVox project [11].

The general overall procedure is as follows.

A training corpus of joint Doppler and speech recordings

is recorded using the Doppler-augmented microphone. The

Doppler signals (by which we refer to the down-heterodyned,

down-shifted and down-sampled ultrasound signal) are per-

fectly synchronized with the speech signal. The speech

signals are parameterized into a sequence of 24-dimensional

mel-frequency cepstral coefficients. These didn’t not include

the zeroth cepstral feature which represents the energy in the

analysis frame. The Doppler signals are also similarly pa-

rameterized into 25-dimensional cepstral coefficients. These

included the energy zeroth cepstral coefficient. Analysis

windows were 25ms, with a 15ms overlap between adja-

cent windows, for both signals. The cepstral features were

augmented with difference features for both signals. This

results in 48-dimensional extended features for the speech

and 50-dimensional features for the Doppler. Finally, the

resulting extended feature vectors obtained from the Doppler

and Speech signals were concatenated to result in a single

98-dimensional feature vector for each analysis frame.

A Gaussian-mixture distribution was then trained from the

collection of 98-dimensional feature vectors derived from the

training corpus.

During synthesis, when only the Doppler signal is avail-

able and the speech signal must be inferred, 50-dimensional

cepstral+difference features were derived from the Doppler

signal. These were used to obtain maximum a posteriori es-

timates of the corresponding 48-dimensional features for the

speech using the GMM learned in the training phase. The

procedure described in [12] was used to derive the sequence

of spectral envelopes for the speech signal.

The spectral envelopes must be scaled by the estimated

energy of the speech in each analysis frame, and must be ex-

cited using the appropriate pitch – F0 (or by noise for un-

voiced frames). In principle, both of these can be predicted

using the same procedure that is used to predict the rest of the

cepstral features for the speech. For this paper, however, we

tried two variants. In the first, we derived the power and F0

values directly from an auio signal captured jointly with the

Doppler signal. This is not a practical strategy for synthesiz-

ing speech from doppler data, because it assumes you already

have the speech, but it is useful way to isolate the spectral

conversion map and assess its quality.

In the second type of transformation we only used the

0th through 24th doppler MCEPs as input features. They

were used both for the prediction of audio spectral features

and audio power. Following the lead of previous researchers

[10] we avoided the difficulties of F0 prediction by treating

N MCD mean (std.dev.)

1 7.24 (1.97)

2 7.25 (2.10)

4 7.05 (2.04)

8 6.84 (1.98)

16 6.69 (1.92)

Table 1. Means and standard deviations of the MCD between
the actual speech signal and the signal synthesized from cor-
responding Doppler recordings

transformed utterances as completely unvoiced. This strat-

egy transformed doppler data to whisper-like speech. This

approach is valid for synthesis from doppler as no audio data

is used during transformation, however, the best way of han-

dling F0 estimation remains open to investigation.

5. EXPERIMENTS

We conducted experiments to evaluate the synthesis of speech

signals from Doppler measurements. A set of 188 sen-

tences from TIMIT were read by a subject into the Doppler-

augmented microphone. The subject was ask to generally

face the mic, but no other impositions were made in order

to ensure that the speech and facial motions were natural.

Simultaneous Doppler and audio recordings were made, with

the final signal captured as 16kHz as mentioned in Section II.

In our first experiment we investigated the ability of

doppler features to predict speech spectral features. For this

experiment, fundamental frequency and power estimates for

the synthesized speech were derived from the audio signal.

The system was trained on 170 utterances from the and test-

ing was performed on 18 utterances. The results of these

trials according to the Mel-Cepstral Distortion (MCD) metric

are in Table 1. The “N” column lists the number of Gaus-

sians in the mixture model. The “MCD mean (std. dev.)”

column lists the means and standard deviations of the MCDs

between the estimated audio MCEPs and the actual MCEPs

extracted from the audio data. MCD is a scaled Euclidean

distance and is a popular metric used in voice transformation.

Smaller numbers are better as they represent a closer match

between the speech synthesized from the Doppler and the

actual speech signal observed. The MCDs from these experi-

ments are on the high side of those seen during typical voice

transformations from speech to speech, but are not outside

the range of what has been seen.

Informal listening indicated that parts of the synthesized

utterances could be understood, and other parts, though un-

intelligible, clearly sounded like speech. Spectrograms of a

recorded speech signal, and the signal synthesized from the

corresponding Doppler are shown in Figures 3 and 4, respec-

tively. Visual inspection suggests that a large portion of for-

mant structure is predicted by the doppler-to-speech mapping.

In the second experiment we only used the Doppler sig-

nal itself to synthesize speech, with no energy or F0 cues
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Fig. 3. Audio Spectrogram for Recorded Utterance: “No

amount of ballyhoo will cover up the sordid fact.”
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Fig. 4. Audio spectrogram for synthesized utterance where

spectral features were predicted from the Doppler signal, but

power and F0 were taken from the audio recording.

derived from the audio. The spectrogram for the synthesized

utterance of this type for the same utterance as the other

spectrograms is in Figure 5. Again, visual inspection sug-

gests that a good deal of format structure is predicted. One

thing to note is that treating the utterance as unvoiced leads

to using noise excitation during synthesis, and this causes

the resulting spectrogram to differ from the previous ones in

that the “ripples” associated with the F0 curve and its har-

monics are missing. Examples of synthesized audio (both

whispered, and using F0 from the speech) may be heard at

http://www.cs.cmu.edu/∼bhiksha/audio/doppler
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Fig. 5. Audio spectrogram for a whispered signal synthesized

entirely from Doppler measurements.

6. CONCLUSIONS

Our experiments reveal that it is possible to derive at least par-

tially intelligible speech from the Doppler signal. We believe

that the synthesis can be significantly better. In this paper

we have only used a very crude cepstral characterization of

the Doppler signal. However, as we note from Figure 2, the

spectral information is the Doppler signal is hard to resolve

with conventional spectral processing. Better characteriza-

tions are possible using longer analysis windows and through

modulation spectra that characterize instantaneous frequency,

for example. The statistical model for the Doppler-to-speech

mapping is a simple Gaussian mixture model. Doppler in-

formation is dynamic by nature, representing velocities rather

than position. We believe that better synthesis may be ob-

tained using more complex models such as switching linear

dynamic models. The experiments conducted in this paper

were not truly silent – the subjects actually spoke. We also

propose to extend our method to situations where the speaker

merely mimes speech. All of these are topics for future inves-

tigation.
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