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ABSTRACT
The effects of social influence and homophily suggest that
both network structure and node attribute information should
inform the tasks of link prediction and node attribute infer-
ence. Recently, Yin et al. [28, 29] proposed Social-Attribute
Network (SAN), an attribute-augmented social network, to
integrate network structure and node attributes to perform
both link prediction and attribute inference. They focused
on generalizing the random walk with restart algorithm to
the SAN framework and showed improved performance. In
this paper, we extend the SAN framework with several lead-
ing supervised and unsupervised link prediction algorithms
and demonstrate performance improvement for each algo-
rithm on both link prediction and attribute inference. More-
over, we make the novel observation that attribute inference
can help inform link prediction, i.e., link prediction accu-
racy is further improved by first inferring missing attributes.
We comprehensively evaluate these algorithms and compare
them with other existing algorithms using a novel, large-
scale Google+ dataset, which we make publicly available1.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Social Network

Keywords
Link prediction, Attribute inference, Social-Attribute Net-
work (SAN)

1. INTRODUCTION
Online social networks (e.g., Facebook, Google+) have be-

come increasingly important resources for interacting with

1
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people, processing information and diffusing social influence.
Understanding and modeling the mechanisms by which these
networks evolve are therefore fundamental issues and active
areas of research.

The classical link prediction problem [16] has attracted
particular interest. In this setting, we are given a snapshot
of a social network at time t and aim to predict links (e.g.,
friendships) that will emerge in the network between t and
a later time t′. Alternatively, we can imagine the setting
in which some links existed at time t but are missing at
t′. In online social networks, a change in privacy settings
often leads to missing links, e.g., a user on Google+ might
decide to hide her family circle between time t and t′. The
missing link problem has important ramifications as missing
links can alter estimates of network-level statistics [11], and
the ability to infer these missing links raises serious privacy
concerns for social networks. Since the same algorithms can
be used to predict new links and missing links, we refer to
these problems jointly as link prediction.

Another problem of increasing interest revolves around
node attributes [31]. Many real-world networks contain rich
categorical node attributes, e.g., users in Google+ have pro-
files with attributes including employer, school, occupation
and places lived. In the attribute inference problem, we aim
to populate attribute information for network nodes with
missing or incomplete attribute data. This scenario often
arises in practice when users in online social networks set
their profiles to be publicly invisible or create an account
without providing any attribute information. The growing
interest in this problem is highlighted by the privacy im-
plications associated with attribute inference as well as the
importance of attribute information for applications includ-
ing people search and collaborative filtering.

In this work, we simultaneously use network structure
and node attribute information to improve performance of
both the link prediction and the attribute inference prob-
lems, motivated by the observed interaction and homophily
between network structure and node attributes. The prin-
ciple of social influence [7], which states that users who are
linked are likely to adopt similar attributes, suggests that
network structure should inform attribute inference. Other
evidence of interaction [13, 10] shows that users with similar
attributes, or in some cases antithetical attributes, are likely
to link to one another, motivating the use of attribute in-
formation for link prediction. Additionally, previous studies
[12, 7] have empirically demonstrated those effects on real-
world social networks, providing further support for consid-
ering both network structure and node attribute information



when predicting links or inferring attributes.
However, the algorithmic question of how to simultane-

ously incorporate these two sources of information remains
largely unanswered. The relational learning [26, 20, 30], ma-
trix factorization and alignment [19, 24] based approaches
have been proposed to leverage attribute information for
link prediction, but they suffer from scalability issues. More
recently, Backstrom and Leskovec [2] presented a Super-
vised Random Walk (SRW) algorithm for link prediction
that combines network structure and edge attribute infor-
mation, but this approach does not fully leverage node at-
tribute information as it only incorporates node information
for neighboring nodes. For instance, SRW cannot take ad-
vantage of the common node attribute San Francisco of u2

and u5 in Fig. 1 since there is no edge between them.
Yin et al. [29, 28] proposed the use of Social-Attribute Net-

work (SAN) to gracefully integrate network structure and
node attributes in a scalable way. They focused on gener-
alizing Random Walk with Restart (RWwR) algorithm to
the SAN model to predict links as well as infer node at-
tributes. In this paper, we generalize several leading su-
pervised and unsupervised link prediction algorithms [16,
9] to the SAN model to both predict links and infer miss-
ing attributes. We evaluate these algorithms on a novel,
large-scale Google+ dataset, and demonstrate performance
improvement for each of them. Moreover, we make the novel
observation that inferring attributes could help predict links,
i.e., link prediction accuracy is further improved by first in-
ferring missing node attributes.

2. PROBLEM DEFINITION
In our problem setting, we use an undirected2 graph G =

(V,E) to represent a social network, where edges in E repre-
sent interactions between the N = |V | nodes in V . In addi-
tion to network structure, we have categorical attributes for
nodes. For instance, in the Google+ social network, nodes
are users, edges represent friendship (or some other relation-
ship) between users, and node attributes are derived from
user profile information and include fields such as employer,
school, and hometown. In this work we restrict our focus to
categorical variables, though in principle other types of vari-
ables, e.g., live chats, email messages, real-valued variables,
etc., could be clustered into categorical variables via vector
quantization, or directly discretized to categorical variables.

We use a binary representation for each categorical at-
tribute. For example, various employers (e.g., Google, In-
tel and Yahoo) and various schools (e.g., Berkeley, Stanford
and Yale) are each treated as separate binary attributes.
Hence, for a specific social network, the number of distinct
attributes M is finite (though M could be large). Attributes
of a node u are then represented as a M -dimensional tri-
nary column vector ~au with the ith entry equal to 1 when
u has the ith attribute (positive attribute), −1 when u does
not have it (negative attribute) and 0 when it is unknown
whether or not u has it (missing attribute). We denote by
A = [~a1 ~a2 · · · ~aN ] the attribute matrix for all nodes. Note
that certain attributes (e.g. Female and Male, age of 20 and
30) are mutually exclusive. Let L be the set of all pairs of
mutually exclusive attributes. This set constrains the at-
tribute matrix A so that no column contains a 1 for two
mutually exclusive attributes.

2
Our model and algorithms can also be generalized to directed graphs.

We define the link prediction problem as follows:

Definition 1 (Link Prediction Problem). Let Ti =
(Gi, Ai, Li) and Tj = (Gj , Aj , Lj) be snapshots of a social
network at times i and j. Then the link prediction problem
involves using Ti to predict the social network structure Gj.
When i < j, new links are predicted. When i > j, missing
links are predicted.

In this paper, we work with three snapshots of the Google+
network crawled at three successive times, denoted T1 =
(G1, A1, L1), T2 = (G2, A2, L2) and T3 = (G3, A3, L3). To
predict new links, we use various algorithms to solve the link
prediction problem with i = 2 and j = 3 and first learn any
required hyperparameters by performing grid search on the
link prediction problem with i = 1 and j = 2. Similarly, to
predict missing links, we solve the link prediction problem
with i = 2 and j = 1 and learn hyperparameters via grid
search with i = 3 and j = 2.

For any given snapshot, several entries of A will be zero,
corresponding to missing attributes. The attribute infer-
ence problem, which involves only a single snapshot of the
network, is defined as follows:

Definition 2 (Attribute Inference Problem). Let
T = (G,A,L) be a snapshot of a social network. Then the
attribute inference problem is to infer whether each zero en-
try of A corresponds to a positive or negative attribute, sub-
ject to the constraints listed in L.

Our goal is to design scalable algorithms leveraging both
network structure and rich node attributes to address these
problems for real-world large-scale networks.

3. MODEL AND ALGORITHMS

3.1 Social-Attribute Network Model
Social-Attribute Network was first proposed by Yin et

al. [28, 29]3 to predict links and infer attributes. However,
their original model didn’t consider negative and mutually
exclusive attributes. In this section, we review this model
and extend it to incorporate negative and mutex attributes.

Given a social network G with M distinct categorical at-
tributes, an attribute matrix A and mutex attributes set L,
we create an augmented network by adding M additional
nodes to G, with each additional node corresponding to an
attribute. For each node u in G with positive or negative
attribute a, we create an undirected link between u and a
in the augmented network. For each mutually exclusive at-
tribute pair (a, b), we create an undirected link between a
and b. This augmented network is called the Social-Attribute
Network (SAN) since it includes the original social network
interactions, relations between nodes and their attributes
and mutex links between attributes.

Nodes in the SAN model corresponding to nodes in G are
called social nodes, and nodes representing attributes are
called attribute nodes. Links between social nodes are called
social links, and links between social nodes and attribute
nodes are called attribute links. Attribute link (u, a) is a
positive attribute link if a is a positive attribute of node u,
and it is a negative attribute link otherwise. Links between

3
Note that they name this model as Augmented Graph. We call it as

Social-Attribute Network because it’s more meaningful.
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Figure 1: Illustration of a Social-Attribute Network
(SAN). The link prediction problem reduces to predict-
ing social links while the attribute inference problem in-
volves predicting attribute links.

mutually exclusive attribute nodes are called mutex links.
Intuitively, the SAN model explicitly describes the sharing of
attributes across social nodes as well as the mutual exclusion
between attributes, as illustrated in the sample SAN model
of Fig. 1. Moreover, with the SAN model, the link prediction
problem reduces to predicting social links and the attribute
inference problem involves predicting attribute links.

We also place weights on the various nodes and edges
in the SAN model. These node and edge weights describe
the relative importance of individual nodes or relationships
across nodes and can also be used in a global fashion to
balance the influence of social nodes versus attribute nodes
and social links versus attribute links. We use w(u) and
w(u, v) to denote the weight of node u and the weight of
link (u, v), respectively. Additionally, for a given social or
attribute node u in the SAN model, we denote by Γ+(u) and
Γs+(u) respectively the set of all neighbors and the set of
social neighbors connected to u via social links or positive at-
tribute links. We define Γ−(u) and Γs−(u) in a similar fash-
ion. This terminology will prove useful when we describe
our generalization of leading link prediction algorithms to
the SAN model in the next section.

The fact that no social node can be linked to multiple mu-
tex attributes is encoded in the mutex property, i.e., there is
no triangle consisting of a mutex link and two positive at-
tribute links in any social-attribute network, which enforces
a set of constraints for all attribute inference algorithms.

In this work, we focus primarily on node attributes. How-
ever, we note that the SAN model can be naturally extended
to incorporate edge attributes. Indeed, we can use a func-
tion (e.g., the logistic function) to map a given set of at-
tributes for each edge (e.g., edge age) into the real-valued
edge weights of the SAN model. The attributes-to-weight
mapping function can be learned using an approach similar
to the one proposed by Backstrom and Leskovec [2].

3.2 Algorithms
Link prediction algorithms typically compute a probabilis-

tic score for each candidate link and subsequently rank these
scores and choose the largest ones (up to some threshold)
as putative new or missing links. In the following, we ex-
tend both unsupervised and supervised algorithms to the
SAN model. Furthermore, we note that when predicting at-
tribute links, the SAN model features a post-processing step
whereby we change the lowest ranked putative positive links
violating the mutex property to negative links.

3.2.1 Unsupervised Link and Attribute Inference
Liben-Nowell and Kleinberg [16] provide a comprehen-

sive survey of unsupervised link prediction algorithms for
social networks. These algorithms can be roughly divided
into two categories: local-neighborhood-based algorithms
and global-structure-based algorithms. In principle, all of
the algorithms discussed in [16] can be generalized for the
SAN model. In this work we focus on representative algo-
rithms from both categories and we describe below how to
generalize them to the SAN model to predict both social
links and attribute links. We add the suffix ‘-SAN’ to each
algorithm name to indicate its generalization to the SAN
model. In our presentation of the unsupervised algorithms,
we only consider positive attribute links, though many of
these algorithms can be extended to signed networks [25].

Common Neighbor (CN-SAN) is a local algorithm that
computes a score for a candidate social or attribute link
(u, v) as the sum of weights of u and v’s common neighbors,
i.e. score(u, v) =

∑
t∈Γ+(u)∩Γ+(v) w(t). Conventional CN

only considers common social neighbors.

Adamic-Adar (AA-SAN) is also a local algorithm. For
a candidate social link (u, v) the AA-SAN score is

score(u, v) =
∑

t∈Γ+(u)∩Γ+(v)

w(t)

log |Γs+(t)| .

Conventional AA, initially proposed in [1] to predict friend-
ships on the web and subsequently adapted by [16] to pre-
dict links in social networks, only considers common social
neighbors. AA-SAN weights the importance of a common
neighbor proportional to the inverse of the log of social de-
gree. Intuitively, we want to downweight the importance
of neighbors that are either i) social nodes that are social
hubs or ii) attribute nodes corresponding to attributes that
are widespread across social nodes. Since in both cases this
weight depends on the social degree of a neighbor, the AA-
SAN weight is derived based on social degree, rather than
total degree.

In contrast, for a candidate attribute link (u, a), the at-
tribute degree of a common neighbor does influence the im-
portance of the neighbor. For instance, consider two so-
cial nodes with the same social degree that are both com-
mon neighbors of nodes u and a. If the first of these social
nodes has only two attribute neighbors while the second has
1000 attribute neighbors, the importance of the former so-
cial node should be greater with respect to the candidate
attribute link. Thus, AA-SAN computes the score for can-
didate attribute link (u, a) as

score(u, a) =
∑

t∈Γs+(u)∩Γs+(a)

w(t)

log |Γ+(t)| .

Low-rank Approximation (LRA-SAN) takes advantage
of global structure, in contrast to CN-SAN and AA-SAN.
Denote XS as the N ×N weighted social adjacency matrix
where the (u, v)th entry of XS is w(u, v) if (u, v) is a social
link and zero otherwise. Similarly, let XA be the N ×M
weighted attribute adjacency matrix where the (u, a)th en-
try of XA is w(u, a) if (u, a) is a positive attribute link and
zero otherwise. We then obtain the weighted adjacency ma-
trix X for the SAN model by concatenating XS and XA,



i.e., X = [XS XA]. The LRA-SAN method assumes that a
small number of latent factors (approximately) describe the
social and attribute link strengths within X and attempts to
extract these factors via low-rank approximation of X, de-
noted by X̂. The LRA-SAN score for a candidate social or
attribute link (u, t) is then simply X̂ut, or the (u, t)th entry

of X̂. LRA-SAN can be computed efficiently via truncated
Singular Value Decomposition (SVD).

CN + Low-rank Approximation (CN+LRA-SAN) is
a mixture of local and global methods, as it first performs
CN-SAN using a SAN model and then performs low-rank ap-
proximation on the resulting score matrix. After performing
CN-SAN, let SS be the resulting N ×N score matrix for all
social node pairs and SA be the resulting N×M score matrix
for all social-attribute node pairs. By virtue of the CN-SAN
algorithm, note that SS includes attribute information and
SA includes social interactions. CN+LRA-SAN then pre-
dicts social links by computing a low-rank approximation of
SS denoted ŜS , and each entry of ŜS is the predicted social
link score. Similarly, ŜA is a low-rank approximation of SA,
and each entry of ŜA is the predicted score for the corre-
sponding attribute link.4

AA + low-rank Approximation(AA+LRA-SAN) is
identical to CN+LRA-SAN but with the score matrices SS

and SA generated via the AA-SAN algorithm.

Random Walk with Restart (RWwR-SAN) [29] is a
global algorithm. In the SAN model, a Random Walk with
Restart [4, 21] starting from u recursively walks to one of its
neighbors t with probability proportional to the link weight
w(u, t) and returns to u with a fixed restart probability α.
The probability Pu,v is the stationary probability of node
v in a random walk with restart initiated at u. In general,
Pu,v 6= Pv,u. For a candidate social link (u, v), we compute
Pu,v and Pv,u and let score(u, v) = (Pu,v + Pv,u)/2. Note
that RWwR for link prediction in previous work [16] com-
putes these stationary probabilities based only on the social
network. For a candidate attribute link (u, a), RWwR-SAN
only computes Pu,a, and Pu,a is taken as the score of (u, a).

We finally note that for predicting social links, if we set the
weights of all attribute nodes and all attribute links to zero
and we set the weights of all social nodes and social links to
one, then all the algorithms described above reduce to their
standard forms described in [16].5 In other words, we recover
the link prediction algorithms on pure social networks.

3.2.2 Supervised Link and Attribute Inference
Link prediction can be cast as a binary classification prob-

lem, in which we first construct features for links, and then
use a classifier such as SVMs or Logistic Regression. In con-
trast to unsupervised attribute inference, negative attribute
links are needed in supervised attribute inference.

4
An alternative method for combining CN-SAN and LRA-SAN under

the SAN model that was not explored in this work involves defining
S = [SS SA], approximating S with Ŝ and using the (u, t)th entry of

Ŝ as a score for link (u, t).
5
For LRA-SAN this implies that XA is an N × M matrix of zeros,

so the truncated SVD of X is equivalent to that of XS except for M
zeros appended to the right singular vectors of XS .
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Figure 2: The fraction of users as a function of the num-
ber of node attributes in the Google+ social network.

Supervised Link Prediction (SLP-SAN) For each link
in our training set, we can extract a set of topological fea-
tures F (e.g. CN, AA, etc.) computed from pure social net-
works and the similar features F SAN computed from the
corresponding social-attribute networks. We explored 4 fea-
ture combinations: i) SLP-I uses only topological features F
computed from social networks; ii) SLP-II uses topological
features F as well as an aggregate feature, i.e., the num-
ber of common attributes of the two endpoints of a link;
iii) SLP-SAN-III uses topological features F SAN ; and iv)
SLP-SAN-VI uses topological features F and F SAN . SLP-
SAN-III and SLP-SAN-VI contain the substring ‘SAN’ be-
cause they use features extracted from the SAN model. SLP-
I and SLP-II are widely used in previous work [9, 17, 2].

Supervised Attribute Inference (SAI-SAN) Recall that
attribute inference is transformed to attribute link predic-
tion with the SAN model. We can extract a set of topolog-
ical features for each positive and negative attribute link.
Moreover, the positive attribute links are taken as positive
examples while the negative attribute links are taken as neg-
ative examples. Hence, we can train a binary classifier for
attribute links and then apply it to infer the missing at-
tribute links.

3.2.3 Iterative Link and Attribute Inference
In many real-world networks, most node attributes are

missing. Fig. 2 shows the fraction of users as a function of
the number of node attributes in Google+ social network.
From this figure, we see that roughly 70% of users have no
observed node attributes. Hence, we will also investigate an
iterative variant of the SAN model. We first infer the top
attributes for users without any observed attributes. We
then update the SAN model to include these predicted at-
tributes and perform link prediction on the updated SAN
model. This process can be performed for several iterations.

4. GOOGLE+ DATA
Google launched its new social network service named

Google+ in early July 2011. We crawled three snapshots of
the Google+ social network and their users’ profiles on July
19, August 6 and September 19 in 2011. They are denoted
as JUL, AUG and SEP, respectively. We then pre-processed
the data before conducting link prediction and attribute in-
ference experiments.

Preprocessing Social Networks In Google+, users divide
their social connections into circles, such as a family circle
and a friends circle. If user u is in v’s circle, then there is a di-



rected edge (v, u) in the graph, and thus the Google+ dataset
is a directed social graph. We converted this dataset into an
undirected graph by only retaining edges (u, v) if both di-
rected edges (u, v) and (v, u) exist in the original graph. We
chose to adopt this filtering step for two reasons: (1) Bidi-
rectional edges represent mutual friendships and hence rep-
resent a stronger type of relationship that is more likely to
be useful when inferring users’ attributes from their friends’
attributes (2) We reduce the influence of spammers who add
people into their circles without those people adding them
back. Spammers introduce fictitious directional edges into
the social graph that adversely influence the performance of
link prediction algorithms.

Collecting Attribute Vocabulary Google+ profiles in-
clude short entries about users such as Occupation, Em-
ployment, Education, Places Lived, and Gender, etc. We
use Employment and Education to construct a vocabulary
of attributes in this paper. We treat each distinct employer
or school entity as a distinct attribute. Google+ has prede-
fined employer and school entities, although users can still
fill in their own defined entities. Due to users’ changing pri-
vacy settings, some profiles in JUL are not found in AUG
and SEP, so we use JUL to construct our attribute vocab-
ulary. Specifically, from the profiles in JUL, we list all at-
tributes and compute frequency of appearance for each at-
tribute. Our attribute vocabulary is constructed by keeping
attributes with frequency of at least 3.

Constructing Social-Attribute Networks In order to
demonstrate that the SAN model leverages node attributes
well, we derived social-attribute networks in which each node
has some positive attributes from the above Google+ so-
cial networks and attribute vocabulary. Specifically, for an
attribute-frequency threshold k, we chose the largest con-
nected social network from JUL such that each node has
at least k distinct positive attributes. We also found the
corresponding social networks consisting of these nodes in
snapshots AUG and SEP. Social-attribute networks were
then constructed with the chosen social networks and the
attributes of the nodes. Specifically, we chose k = {2, 4}
to construct 6 social-attribute networks whose statistics are
shown in Table 1. Each social-attribute network is named by
concatenating the snapshot name and the attribute-frequency
threshold. For example, ‘JUL4’ is the social-attribute net-
work constructed using JUL and k = 4. These names are
indicated in the first column of the table.

In the crawled raw networks, some social links in JULi
are missing in AUGi and SEPi, where i = 2, 4. These links
are missing due to one of two events occurring between the
JUL and AUG or SEP snapshots: 1) users block other users,
or 2) users set (part of) their circles to be publicly invisi-
ble after which point they cannot be publicly crawled. These
missed links provide ground truth labels for our experiments
of predicting missing links. However, these missing links can
alter estimates of network-level statistics, and can have un-
expected influences on link prediction algorithms [11]. More-
over, it is likely in practice that companies like Facebook and
Google keep records of these missing links, and so it is rea-
sonable to add these links back to AUGi and SEPi for our
link prediction experiments. The third column in Table 1 is
the number of all social links after filling the missing links
into AUGi and SEPi. The second column #soci links is used

Table 1: Statistics of social-attribute networks.

#soci links#all soci links#soci nodes#pos attri links#attri nodes

JUL4 7062 7062

5200 24690 9539AUG4 7430 7813

SEP4 7422 8100

JUL2 287906 287906

170002 442208 47944AUG2 328761 339059

SEP2 332398 354572

for experiments of predicting missing links, and column #all
soci links is used for the experiments of predicting new links.

From these two columns, the number of new links or miss-
ing links can be easily computed. For example, if we use
AUG2 as training data and SEP2 as testing data for link pre-
diction, the number of new links is 354572−339059 = 15513,
which is computed with entries in column #all soci links. If
we use AUG2 as training data and JUL2 as testing data
in predicting missing links, the number of missing links is
339059 − 328761 = 10298, which is computed with corre-
sponding entries in column #soci links and #all soci links.

5. EXPERIMENTS

5.1 Experimental Setup
In our experiments, the main metric used is AUC, Area

Under the Receiver Operating Characteristic (ROC) Curve,
which is widely used in the machine learning and social net-
work communities [5, 2]. AUC is computed in the manner
described in [8], in which both positive and negative exam-
ples are required. In principle, we could use new links or
missing links as positive examples and all non-existing links
as negative examples. However, large-scale social networks
tend to be very sparse, e.g., the average degree is 4.17 in
SEP2, and, as a result, the number of non-existing links can
be enormous, e.g., SEP2 has around 2.9× 1010 non-existing
links. Hence, computing AUC using all non-existing links
in large-scale networks is typically computationally infeasi-
ble. Moreover, the majority of new links in typical online
social networks close triangles [14, 2], i.e., are hop-2 links.
For instance, we find that 58% of the newly added links in
Google+ are hop-2 links. We thus evaluate our large net-
work experiments using hop-2 link data as in [2], i.e., new
or missing hop-2 links are treated as positive examples and
non-existing hop-2 links are treated as negative examples.

In a social-attribute network, there are two categories of
hop-2 links: 1) those with two endpoints sharing at least
one common social node, and 2) those with two endpoints
sharing only common attribute nodes. Local algorithms ap-
plied to the original social network are unable to predict
hop-2 links in the second category. Thus, we evaluate only
with respect to hop-2 links in the first category, so as not to
give unfair advantage to algorithms running on the social-
attribute network. To better understand whether the AUC
performance computed on hop-2 links can be generalized
to performance on any-hop links, we additionally compute
AUC using any-hop links on the smaller Google+ networks.

In general, different nodes and links can have different
weights in social-attribute networks, representing their rel-
ative importance in the network. In all of our experiments
in this paper, we set all weights to be one and leave it for
future work to learn weights.

We compare our link prediction algorithms with Super-
vised Random Walk (SRW) [2], which leverages edge at-
tributes, by transforming node attributes to edge attributes.
Specifically, we compute the number of common attributes



Table 2: Results for predicting new links. (a)AUC of hop-2 new links on the train-test pair AUG4-SEP4. (b)AUC
of hop-2 new links on the train-test pair AUG2-SEP2. (c) (d) AUC of any hop new links on the train-test pair
AUG4-SEP4. The numbers in parentheses are standard deviations.

(a)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.6730 0.7315
AA-SAN 0.7109 0.7476
LRA-SAN 0.6003 0.6262

CN+LRA-SAN 0.6969 0.7671
AA+LRA-SAN 0.7118 0.7471
RWwR-SAN 0.6033 0.6143

(b)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.6936 0.7508
AA-SAN 0.7638 0.7895
LRA-SAN 0.6410 0.6385

CN+LRA-SAN 0.5642 0.6373
AA+LRA-SAN 0.6032 0.6557
RWwR-SAN 0.6788 0.6912

(c)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.7482 0.8298
AA-SAN 0.7483 0.8324
LRA-SAN 0.8075 0.8237

CN+LRA-SAN 0.7857 0.8651
AA+LRA-SAN 0.8193 0.8552
RWwR-SAN 0.9363 0.9548

(d)

Alg AUC
SLP-I 0.9128(0.0140)
SLP-II 0.9580(0.0017)

SLP-SAN-III 0.9450(0.0007)
SLP-SAN-VI0.9706(0.0004)

SRW 0.9383

of the two endpoints of each existing link. As in [2], we
also use the number of common neighbors as an edge at-
tribute. We adopt the Wilcoxon-Mann-Whitney (WMW)
loss function and logistic edge strength function in our im-
plementations as recommended in [2].

We compare our attribute inference algorithms with two
algorithms, BASELINE and LINK, introduced by Zheleva
and Getoor [31]. Using only node attributes, BASELINE
first computes a marginal attribute distribution and then
uses an attribute’s probability as its score. LINK trains a
classifier for each attribute by flattening nodes as the rows of
the adjacency matrix of the social networks.6 Zheleva and
Getoor [31] found that LINK is the best algorithm when
group memberships are not available.

We use SVM as our classifier in all supervised algorithms.
For link prediction, we extract six topological features (CN-
SAN, AA-SAN, LRA-SAN, CN+LRA-SAN, AA+LRA-SAN
and RWwR-SAN) from both pure social networks and social-
attribute networks. Hence, SLP-I, SLP-II, SLP-SAN-III and
SLP-SAN-VI use 6, 7, 6 and 12 features, respectively. For at-
tribute inference, we extract 9 topological features for each
attribute link. We adopt two ranks (detailed in 5.2.2) for
each low-rank approximation based algorithms, thus obtain-
ing 6 features. The other three features are CN-SAN, AA-
SAN and RWwR-SAN. To account for the highly imbalanced
class distribution of examples for supervised link prediction
and attribute inference we downsample negative examples
so that we have equal number of positive and negative ex-
amples (techniques proposed in [17, 6] could be used to
further improve the performance).

We use the pattern dataset1 -dataset2 to denote a train-
test or train-validation pair, with dataset1 a training dataset
and dataset2 a testing or validation dataset. When con-
ducting experiments to predict new links on the AUGi-SEPi
train-test pair, SRW, classifiers and hyperparameters of global
algorithms, i.e., ranks in LRA-SAN, CN+LRA-SAN, and
AA+LRA-SAN and the restart probability α in RWwR-
SAN, are learned on the JULi-AUGi train-validation pair.
Similarly, when predicting missing links on train-test pair
AUGi-JULi, they are learned on train-validation pair SEPi-
AUGi, where i = 2, 4.

The CN-SAN and AA-SAN algorithms are implemented
in Python 2.7 while the RWwR-SAN algorithm and Super-
vised Random Walk (SRW) are implemented in Matlab, and
all of them are run on a desktop with a 3.06 GHz Intel Core
i3 and 4GB of main memory. LRA-SAN, CN+LRA-SAN
and AA+LRA-SAN algorithms are implemented in Matlab

6
The original LINK algorithm [31] trained a distinct classifier for each

attribute type. In our setting an attribute type, (e.g., Education) can
have multiple values, so we train a classifier for each binary attribute
value.

and run on an x86-64 architecture using a single 2.60 Ghz
core and 30GB of main memory.

5.2 Experimental Results
In this section we present evaluations of the algorithms

on the Google+ dataset. We first show that incorporat-
ing attributes via the SAN model improves the performance
of both unsupervised and supervised link prediction algo-
rithms. Then we demonstrate that inferring attributes via
link prediction algorithms within the SAN model achieves
state-of-the-art performance. Finally, we show that by com-
bining attribute inference and link prediction in an iterative
fashion, we achieve even greater accuracy on the link pre-
diction task.
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Figure 3: ROC curves of the CN+LRA-SAN algorithm
for predicting new links. AUG4-SEP4 is the train-test
pair. JUL4-AUG4 is the train-validation pair.

5.2.1 Link Prediction
To demonstrate the benefits of combining node attributes

and network structure, we run the SAN-based link predic-
tion algorithms described in Section 3.2 both on the original
social networks and on the corresponding social-attribute
networks (recall that the SAN-based unsupervised algorithms
reduce to standard unsupervised link prediction algorithms
when working solely with the original social networks).

Predicting New Links Table 2 shows the AUC results
of predicting new links for each of our datasets. We are
able to draw a number of conclusions from these results.
First, the SAN model improves every unsupervised learning
algorithm on every dataset, save for LRA-SAN on AUG2-
SEP2. Second, Table 2d shows that attributes also improve
supervised link prediction performance since SLP-SAN-VI,
SLP-SAN-III and SLP-II outperform SLP-I. Moreover, SLP-
SAN-VI, which adopts features extracted from both social
networks and social-attribute networks, achieves the best
performance, thus demonstrating the power of the SAN model.
Third, comparing RWwR-SAN in Table 2c and SRW in
Table 2d, we observe that the SAN model is better than
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Figure 4: Performance of various algorithms on attribute
inference on SEP4. (a) AUC under ROC curves. (b)
Pre@2,3,4.

SRW at leveraging node attributes since RWwR-SAN with
attributes outperforms SRW. This result is not surprising
given that SRW is designed for edge attributes and when
transforming node attributes to edge attributes, we lose some
information. For instance, as illustrated in Fig. 1, nodes
u2 and u5 share the attribute San Francisco. When trans-
forming node attributes to edge attributes, this common at-
tribute information is lost since u2 and u5 are not linked.

Fig. 3 shows the ROC curves of the CN+LRA-SAN algo-
rithm. We see that curve of CN+LRA-SAN with attributes
dominates that of CN+LRA-SAN without attributes, demon-
strating the power of the SAN model to effectively incorpo-
rate the additional predictive information of attributes.

Predicting Missing Links Missing links can be divided
into two categories: 1) links whose two endpoints have some
social links in the training dataset. 2) links with at least
one endpoint that has no social links in the training dataset.
Category 1 corresponds to the scenarios where users block
users or users set a part of their friend lists (e.g. family cir-
cles) to be private. Category 2 corresponds to the scenario
in which users hide their entire friend lists. Note that all
hop-2 missing links belong to Category 1. In addition to
performing experiments to show that the SAN model im-
proves missing link prediction, we also perform experiments
to explore which category of missing links is easier to pre-
dict. Table 3 shows the results of predicting missing links
on various datasets. As in the new-link prediction setting,
the performance of every algorithm is improved by the SAN
model, except for LRA-SAN on AUG4-JUL4 and RWwR-
SAN on AUG4-JUL4 for hop-2 missing links.

When comparing Tables 3d and 3e or Tables 3c and 3f,
we conclude that the missing links in Category 2 are harder
to predict than those in Category 1. RWwR-SAN without
attributes performs poorly when predicting any-hop miss-
ing links in both categories (as indicated by the entry with
0.2000 in Table 3d). This poor performance is due to the
fact that RWwR-SAN without attributes assigns zero scores
for all the missing links in Category 2 (positive examples)
and positive scores for most non-existing links (negative ex-
amples), making many negative examples rank higher than
positive examples and resulting in a very low AUC.

5.2.2 Attribute Inference
In this section, we focus on inferring attributes using the

SAN model. In our next set of experiments in Section 5.2.3,
we use the results of these attribute inference algorithms
to further improve link prediction, and the results of this
iterative approach further validate the performance of the
SAN model for attribute inference. Since the first step of
iterative approach of Section 5.2.3 involves inferring the top
attributes for each node, we employ an additional perfor-
mance metric called Pre@K in our attribute inference ex-
periments. Compared to AUC, Pre@K better captures the
quality of the top attribute predictions for each user. Specif-
ically, for each sampled user, the top-K predicted attributes
are selected, and (unnormalized) Pre@K is then defined as
the number of positive attributes selected divided by the
number of sampled users. We address score ties in the man-
ner described in [18]. Since most Google+ users have a small
number of attributes, we set K = 2, 3, 4 in our experiments.

When evaluating algorithms for the inference of missing
attributes, we require ground truth data. In general, ground
truth for node attributes is difficult to obtain since it is often
not possible to distinguish between negative and missing at-
tributes. However, for most users the number of attributes
is quite small, and so we assume that users with many posi-
tive attributes have no missing attributes. Hence, we evalu-
ate attribute inference on users that have at least 4 specified
attributes, i.e., we work with users in SEP4 and assume that
each attribute link in SEP4 is either positive or negative.

In our experiment, we sample 10% of the users in SEP4
uniformly at random, remove their attribute links from SEP4,
and evaluate the accuracy with which we can infer these
users’ attributes. All removed positive attribute links are
viewed as positive examples, while all the negative attribute
links of the sampled users are treated as negative examples.
We run a variety of algorithms for attribute inference, and
for each algorithm we average the results over 10 random
trials. As noted above, we evaluate the performance of at-
tribute inference using both AUC and Pre@K.

For the low-rank approximation based algorithms, i.e.,
LRA-SAN, CN+LRA-SAN and AA+LRA-SAN, we report
results using two different ranks, 100 and 1000, and indicate
which was used by the number following the algorithm name
in Fig. 4. We choose these two small ranks for computational
reasons and also based on the fact that low-rank approxima-
tion methods assume that a small number of latent factors
(approximately) describe the social-attribute networks. For
RWwR-SAN, we set the restart probability α to be 0.7.7

Fig. 4 shows the attribute inference results for various al-
gorithms. Several interesting observations can be made from
this figure. First, under both metrics, all SAN-based algo-
rithms perform better than BASELINE, save LRA100-SAN
and LRA1000-SAN under Pre@2,3,4 metric, which indicates
that the SAN model is good at leveraging network structure
to infer missing attributes. Second, we find that AUC and
Pre@K provide inconsistent conclusions about relative al-
gorithm performance. For instance, the mean AUC values
suggest that SAI-SAN beats all other algorithms. However,
several unsupervised algorithms outperform SAI-SAN with
respect to Pre@2,3,4. The inconsistencies between the two
metrics are expected since AUC is a global measurement
while Pre@K is a local one. Our SAI-SAN algorithm dom-
inates LINK under both AUC and Pre@2,3,4 metrics, thus
demonstrating the power of mapping attribute inference to

7
We find that RWwR-SAN performs consistently across different

restart probabilities (results omitted due to space constraints).



Table 3: Results for predicting missing links. (a) AUC of hop-2 missing links on the train-test pair AUG4-JUL4. (b)
AUC of hop-2 missing links on the train-test pair AUG2-JUL2. (c)-(f) AUC of any-hop missing links on the train-test
pair AUG4-JUL4. Missing links in both categories 1 and 2 are used in (c) and (d). Missing links in Category 1 are
used in (e) and (f). The numbers in parentheses are standard deviations.

(a)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.7180 0.7925
AA-SAN 0.7437 0.7697
LRA-SAN 0.6569 0.6237

CN+LRA-SAN 0.7147 0.7986
AA+LRA-SAN 0.7410 0.7668
RWwR-SAN 0.5731 0.5676

(b)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.6938 0.7309
AA-SAN 0.7633 0.7796
LRA-SAN 0.6044 0.6059

CN+LRA-SAN 0.5816 0.6266
AA+LRA-SAN 0.6212 0.6569
RWwR-SAN 0.6595 0.6706

(c)

Alg AUC
SLP-I 0.5453(0.0120)
SLP-II 0.6991(0.0065)

SLP-SAN-III 0.7161(0.0030)
SLP-SAN-VI0.8481(0.0022)

(d)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.5460 0.7012
AA-SAN 0.5460 0.7033
LRA-SAN 0.5495 0.6177

CN+LRA-SAN 0.5547 0.7048
AA+LRA-SAN 0.5640 0.7325
RWwR-SAN 0.2000 0.7619

(e)

Alg w/o AttriWith Attri
Random 0.5000 0.5000
CN-SAN 0.7329 0.7765
AA-SAN 0.7330 0.7784
LRA-SAN 0.7316 0.7401

CN+LRA-SAN 0.7515 0.7510
AA+LRA-SAN 0.8104 0.8116
RWwR-SAN 0.7797 0.8838

(f)

Alg AUC
SLP-I 0.8023(0.0088)
SLP-II 0.8403(0.0033)

SLP-SAN-III 0.8620(0.0080)
SLP-SAN-VI0.8854(0.0324)

link prediction with the SAN model.

Table 4: Results for iteratively inferring attributes and
predicting links. (a) on the AUG4-SEP4 train-test pair.
(b) on the AUG4-JUL4 train-test pair. Results are av-
eraged over 10 trials. The numbers in parentheses are
standard deviations.

(a)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.6730(0) 0.7174(0.0077) 0.7291(0.0063)
AA-SAN 0.7109(0) 0.7408(0.0063) 0.7440(0.0026)
LRA-SAN 0.6003(0) 0.6274(0.0052) 0.6320(0.0055)

CN+LRA-SAN 0.6969(0) 0.7497(0.0134) 0.7534(0.0084)
AA+LRA-SAN0.7111(0) 0.7373(0.0050) 0.7442(0.0032)

(b)

Alg w/o Attri With Attri With Inferred Attri
Random 0.5000(0) 0.5000(0) 0.5000(0)
CN-SAN 0.7180(0) 0.7780(0.0173) 0.7856(0.0100)
AA-SAN 0.7437(0) 0.7626(0.0100) 0.7661(0.0045)
LRA-SAN 0.6569(0) 0.6189(0.0105) 0.6134(0.0157)

CN+LRA-SAN 0.7147(0) 0.7838(0.0256) 0.7969(0.0059)
AA+LRA-SAN0.7410(0) 0.7591(0.0118) 0.7673(0.0051)

5.2.3 Iterative Attribute and Link Inference
Section 5.2.1 demonstrated that knowledge of a user’s at-

tributes can lead to significant improvements in link predic-
tion. However, in real-world social networks like Google+,
the vast majority of user attributes are missing (see Fig. 2).
To increase the realized benefits of social-attribute networks
with few attributes, we propose first inferring missing at-
tributes for each user whose attributes are missing and then
performing link prediction on the inferred social-attribute
networks. Recall that SAI-SAN achieves the best AUC,
RWwR-SAN achieves the best Pre@K in inferring attributes
(see Fig. 4) and AA-SAN achieves comparable Pre@K re-
sults while being more scalable. Thus, in the following ex-
periments, we use AA-SAN to first infer the top-K missing
attributes for users, and subsequently perform link predic-
tion using various methods.

In our experiments, when we are working on the pair train-
test, we sample 10% of the users of train uniformly at ran-
dom and remove their attributes. We then run three vari-

ants of link prediction algorithms: i) without attributes, ii)
with only the remaining attributes, and iii) with the remain-
ing attributes along with the inferred attributes. The top-4
attributes are inferred for each sampled user by AA-SAN.
We report the results averaged over 10 trials. The hyper-
parameters of the global algorithms are the same as those
in (Section 5.2.1), which are learned from the corresponding
train-validation pair.

Table 4a shows the results of first inferring attributes and
then predicting new links on the AUG4-SEP4 train-test pair.
Table 4b shows the results of first inferring attributes and
then predicting missing links on the AUG4-JUL4 train-test
pair. We see that the inferred attributes improve the per-
formance of all algorithms except LRA-SAN on predicting
missing links, which is unable to make use of attributes as
demonstrated earlier in Table 3a. The AUCs obtained with
inferred attributes for all other algorithms are very close to
those obtained with all positive attributes as shown in Table
2a. This further demonstrates that AA-SAN is an effective
algorithm for attribute inference.

6. RELATED WORK
A wide range of link prediction methods have been de-

veloped. Liben-Nowell and Kleinberg [16] surveyed a set of
unsupervised link prediction algorithms. Li [15] proposed
Maximal Entropy Random Walk (MERW). Lichtenwalter
et al. [17] proposed the PropFlow algorithm which is sim-
ilar to RWwR but more localized. However, none of these
approaches leverage node attribute information.

Link prediction methods leveraging attribute information
first appear in the relational learning community [26, 20, 3,
30]. However, these approaches suffer from scalability issues.
For instance, the largest network tested in [26] has about 3K
nodes. Recently, Backstrom and Leskovec [2] proposed the
Supervised Random Walk (SRW) algorithm to leverage edge
attributes. However, SRW does not handle the scenario in
which two nodes share common attributes (e.g. nodes u2

and u5 in Fig. 1), but no edge already exists between them.
Mapping link prediction to a classification problem [9, 17,
6] is another way to incorporate attributes. We have shown
that classifiers using features extracted from the SAN model
perform very well. Yang et al. [27] proposed to jointly pre-



dict links and propagate node interests (e.g., music interest).
Their algorithm relies on the assumption that each node in-
terest has a set of explicit attributes. As a result, their
algorithm cannot be applied to our scenario in which it’s
hard (if possible) to extract explicit attributes for our node
attributes.

Previous works in [22, 23] aim at inferring node attributes
(e.g., ethnicity and political orientation) using supervised
learning methods with features extracted from user names
and user-generated texts. Zheleva and Getoor [31] map at-
tribute inference to a relational classification problem. They
find that methods using group information achieve good re-
sults. These approaches are complementary to ours since
they use additional information apart from network struc-
ture and node attributes. In this paper, we transform the
attribute inference problem into a link prediction problem
with the SAN model. Therefore, any link prediction algo-
rithm can be used to infer missing attributes. More impor-
tantly, we demonstrate that attribute inference can in turn
help link prediction with the SAN model.

7. CONCLUSION AND FUTURE WORK
We comprehensively evaluate the Social-Attribute Network

(SAN) model proposed in [28, 29] in terms of link prediction
and attribute inference. More specifically, we adapt several
representative unsupervised and supervised link prediction
algorithms to the SAN model to both predict links and infer
attributes. Our evaluation with a large-scale novel Google+
network dataset demonstrates performance improvement for
each of these generalized algorithm on both link prediction
and attribute inference. Moreover, we demonstrate a further
improvement of link prediction accuracy by using the SAN
model in an iterative fashion, first to infer missing attributes
and subsequently to predict links. Interesting avenues for
future research include devising an iterative algorithm that
alternates between attribute and link prediction, learning
node and edge weights in the SAN model, and incorporating
edge attributes, negative node attributes and mutex edges
into large-scale experiments.
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