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Multivariate Ordinal Data

Many real world applications involve ordered categorical data also
known as ordinal data.

surveys movie ratings medical data

Figure: Examples of ordinal data.

Figures from https://en.wikipedia.org/wiki/Likert_scale, http://www.imdb.com,
http://shine365.marshfieldclinic.org/cancer-care/
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Multivariate Ordinal Distributions

I Multivariate ordinal models, especially graphical models, help
us understand dependencies between variables of interest.

I Existing models have one or more of the following problems:
I estimators that do not scale well to high dimensions.
I estimators with no strong statistical guarantees.
I no graphical model representation.
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Aim

Develop multivariate ordinal graphical model distributions
I and provide computationally tractable estimators, that come

with strong statistical guarantees.
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Univariate Ordinal Distributions

I A huge line of work exists on designing ordinal univariate
conditional models

I also called as ordinal regression models.
I Most of these fall into the following two categories:

I Logit Models.
I Latent Variable Models.
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Logit Models

I Let Y ∈ {1, . . .M} be a ordinal random variable and X be the
vector of covariates.

I Logit models parametrize various Log-odds ratios of Y .
I Popular models in this class include:

I cumulative logit model: log
[
P(Y≤k|X)
P(Y>k|X)

]
= θk + µ(X).

I continuation logit model: log
[
P(Y=k|X)
P(Y>k|X)

]
= θk + µ(X).

I consecutive logit model: log
[

P(Y=k|X)
P(Y=k+1|X)

]
= θk + µ(X).
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Latent Variable Models

I These models treat the ordinal variable as a discretized version
of a continuous latent random variable.

I Let Z be the latent random
variable. Then

Y = k iff Z ∈ [θk−1+µ(X), θk+µ(X))

I Popular choices for Z include gaussian, logistic distributions.
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Designing Multivariate Ordinal Distributions

I Leverage the univariate ordinal distributions to construct
multivariate ordinal distributions.

I Two possible approaches, corresponding to each class of
univariate distributions:

I Logit Models: Specify conditional logit distributions that
result in a consistent joint distribution.

I Latent Variable Models: Assume that the ordinal random
vector is generated through quantization of a continuous latent
random vector.
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Multivariate Models from Univariate Logit Models

I We use univariate Logit models to specify conditional
distributions of each variable given the rest.

I then study when these lead to a consistent joint distribution
via Hammersley-Clifford-type analyses.
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Cumulative and Continuation Logit Models

I Let Y = (Y1, . . . ,Yp) be a ordinal random vector.
I Suppose, the conditional distributions either follow cumulative

logit or continuation logit distributions:

(cumulative logit) log
[P(Ys ≤ j |Y\s)

P(Ys > j |Y\s)

]
= θs;j + µs(Y\s)

(continuation logit) log
[P(Ys = j |Y\s)

P(Ys > j |Y\s)

]
= θs;j + µs(Y\s).

Theorem
For any choice of functions {µs(.)}s∈[p], the conditional
distributions are not consistent with any joint distribution over Y.
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Consecutive Logit Model

Suppose, the conditional distributions have the following
cumulative logit distribution:

log
[ P(Ys = j |Y\s)

P(Ys = j + 1|Y\s)

]
= θs;j + µs(Y\s).

Theorem
The conditional distributions are consistent with a pairwise
graphical model distribution w.r.t an undirected graph G = (V ,E ),
if and only if each µs(Y\s) has the following form

µs(Y\s) =
∑

t∈N(s)

θst
(
M − Yt

)
.

The corresponding joint distribution is given by

P(Y) ∝ exp
( ∑

s∈V ,j∈[M−1]

θs;j I[Ys ≤ j ] +
∑

(s,t)∈E

θst
(
M − Ys

)(
M − Yt

))
.
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Estimation of Consecutive Logit Model

We solve a regularized node conditional log likelihood maximization
problem at each node s:

argmin
θs·

−En

[
logP(Ys |Y\s)

]
+ λn

∑
t 6=s

|θst |,

where En[f (Y )] is the sample mean of f (Y ).

Statistical Guarantees
Guarantees for estimators of exponential family graphical
models [YRAL15, TPSR15] carry over to the consecutive ratio
model.

A. Suggala, E. Yang, P. Ravikumar Ordinal Graphical Models: A Tale of Two Approaches 12 / 23



Multivariate Models from Univariate Latent Variable Models

I The ordinal random vector is modeled as quantization of a
continuous latent random vector.

I We study the probit model, where the multivariate latent
random vector is multivariate Gaussian.
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Probit Model

Let Y = (Y1, . . . ,Yp) and Z = (Z1, . . . ,Zp) be the ordinal and
latent random vectors.

Probit Model

(Latent Vector) Z ∼ N (0,Σ), where diag(Σ) = 1,

(Ordinal Vector) Yj = k , iff Zj ∈ [θj ,k−1, θj ,k), ∀j ∈ [p].
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Multistage Estimation of Probit Model

Stage I - Estimation of Thresholds (θ)
To estimate the thresholds for Yj , we maximize the univariate
marginal log likelihood for Yj .

Stage II - Raw Estimate of Correlation Matrix (Σ)
To estimate Σjk , we maximize the bivariate marginal log likelihood
for (Yj ,Yk).

Stage III - Smoothed Estimate of Correlation Matrix (Σ)
We plug-in the estimate from Stage II into GLASSO estimator.
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Statistical Guarantees

Theorem
Suppose the true correlation matrix satisfies incoherence condition
and the bivariate likelihood functions satisfy certain regularity
conditions. Then if GLASSO is run with λn �

√
log p′/n and n is

lower bounded as n & d2 logmax{n, p}, where d is the maximum
node degree in the latent graph, then the inverse of estimate Σ̂
from Stage III satisfies the following bound with high probability

∥∥Σ̂−1 − (Σ∗)−1∥∥
∞ .

√
log p′

n
.
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Synthetic Experiments

New Estimators
I Consec Model - Estimator for Consecutive Logit Model.
I ProbitDirect - New estimator for Probit Model.

Baselines
I Discrete Model - which ignores the ordering of categories.
I ProbitEM, ProbitEMApprox - EM based approaches for

estimating Probit Model.
I Oracle which has access to latent variables in Probit Model.
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Synthetic Experiments

Data generated from Probit Model
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Figure: Comparison of various estimators when the data is generated from a probit model with chain
graph structure, p = 50. Top and bottom rows correspond to chain and grid graphs respectively.

Frobenius Loss =
‖Σ∗−1−Σ̂−1‖F
‖Σ∗−1‖F

. Entropy Loss = 〈〈Σ∗, Σ̂−1〉〉 − log det(Σ∗Σ̂−1)− p.

I ProtbitDirect is 1-2 orders of magnitude faster than ProbitEM.
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Synthetic Experiments

Data generated from Consecutive Logit Model
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Figure: ROC plots for graph structure recovery. Data generated from a Consecutive Logit model with
2D grid structure (10× 5 grid).
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Health Information National Trends Survey study

I A survey conducted by National Cancer Institute (NCI) on
Americal public.

I Collected information about tobacco product use and risk
perceptions.

Figure: Associations of smoking behavior with socio-demographic
indicators

.
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Conclusion and Future Work

Conclusion
I Investigated two categories of multivariate ordinal distributions
I Proposed estimators for these that are both computationally

tractable and come with strong statistical guarantees.
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Questions?
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