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Introduction

Motivation

Many problems in ML, statistics involve non-convex non-concave
games
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Introduction

Motivation

Many problems in ML, statistics involve non-convex non-concave

games
min max F(x, y)
x y
» Generative Adversarial Networks

» Robust optimization

» Minimax Estimators
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Background

Setup

» Time: 1,2,...T
» At time t, learner predicts x; € X
» Adversary simultaneously reveals loss function £

» Goal: minimize cumulative loss 2;1 fr(x¢)
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Background

Setup

» At time t, predict x; and observer loss function f;
» Goal: minimize cumulative loss Zthl fr(xt).

» Benchmark: minycx Z;l ft(x) - best fixed policy in
hindsight.

> Regret: 3 1 fi(x¢) — mingex 31 fi(x)

Minimize Regret
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Background

History

» Online linear learning: dates back to
[Brown and Von Neumann, 1950]

» Online convex learning: heavily studied since [Zinkevich, 2003]
> Regret

xeX

T T
D fi(xe) —min Y f(x) = O(VT)
t=1 t=1
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Background

Online Non-Convex Learning

» Computationally intractable even if all f;(-) are the same

What can we do?

1. Weaker notions of regret (such as stationarity in
optimization) [Hazan et al., 2017]

2. Assume access to offline optimization oracles (only deal with
learning) [Agarwal et al., 2018]
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Main Result

Main Result

Suppose:

» f:(-) is Lipschitz continuous
» x; € X with bounded diameter
» we have access to offline optimization oracle

There exists a randomized algorithm such that

T

Z xt—mmet(x )| = O(VT).

> Previous best: O(7?/3) [Agarwal et al., 2018]
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FTPL

Algorithm: Follow The Perturbed Leader

Algorithm

> o, ~ Unif(0,v/T)

e : —
> x¢ S argmingcy Y10 fi(x) = (01, %)

» Studied by [Hannan, 1957, Kalai and Vempala, 2016] for
linear losses

> Regret = O(V/T)
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FTPL

Main Intuitions

Reduction to oblivious adversary [Cesa-Bianchi and Lugosi, 2006]

» assume adversary fixes choices ahead of time

» suffices to work with a single random vector o
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FTPL

Main Intuitions

Reduction to oblivious adversary [Cesa-Bianchi and Lugosi, 2006]

» assume adversary fixes choices ahead of time

» suffices to work with a single random vector o

Be the perturbed leader lemma

> Recall, x; & argmin, ey Y121 fi(x) — (0, x)

> E |:Zt 1 fe(xe1) — minkex fe(x )} O(VT), since 0 < VT
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FTPL

Main Intuitions (contd.)

Stability
» Recall: xtdi argmmxeXZ f( ) — (o, x)
> E XL ilx) = 2L flxern)| < LELEllxe = xepall]

15/29



FTPL

Stability Question

> Recall: x; % argmin, ey Y121 fi(x) — (0, x)
» How large can E[||x; — x¢11||] be?
> [Agarwal et al., 2018]: E[[|x; — x;11]] = O(T~1/3)

Our Improvement

E[llxe — xe41ll] = O(T*/?)
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FTPL

Weak Monotonicity Property

> xi(0) € argminger Y001 fi(x) - (0, %)

Weak Monotonicity Property

> x:i(0+ cej) > x; (o) forall o,c >0

x;4(0 + ce;)
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FTPL
Strong Monotonicity Property

def : _
> xi(0) = argmin,ex 32157 fi(x) — (0. %)

Strong Monotonicity Property (1D)

Forall ¢ > L
» max{x:(0),xt+1(0)} < min{x¢(o + ¢), x¢+1(c + ¢)}
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FTPL

Strong Monotonicity Property

» Recall: x:(0) %f argmin, ¢y Z,t;ll fi(x) — (o, x)

Strong Monotonicity Property (High Dim.)

» Suppose ||x¢(0) — x¢1(0)||1 < 10d - [x¢,i(0) — X¢41,i(0)]
» Then for o/ = o + 100Lde;

max (x¢,i(0), X¢11,i(0)) <min (x¢,i(0"), Xe11,i(0”))

1
+ T0|Xt,i(0) — x¢11,i(0)]
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FTPL

Strong Monotonicity Property

» Recall: x:(0) %f argmin, ¢y Z,t;ll fi(x) — (o, x)

Strong Monotonicity Property (High Dim.)

» Suppose ||x¢(0) — x¢1(0)||1 < 10d - [x¢,i(0) — X¢41,i(0)]
» Then for o/ = o + 100Lde;

max (x¢,i(0), X¢11,i(0)) <min (x¢,i(0"), Xe11,i(0”))

1
+ T0|Xt,i(0) — x¢11,i(0)]

» The two monotonicity properties give us O(T~1/2) stability
bound
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FTPL

Recap

» Follow the perturbed leader
» Be the leader lemma: playing x;.1 at time t is very good
» Stability: With perturbations, ||[x; — x;41|| is very small

» Key technical results: Tight monotonicity lemmas

FTPL with access to offline optimization oracle achieves O(+/T)
regret
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Optimistic FPTL

Optimistic FTPL

» Better regret bounds when sequence of losses are predictable

» gi[fi,...fi_1]: guess for f; at iteration t

Algorithm

> o ~ Unif(0,v/T)

def . -
> x; = arg min,y Z,tzll fi(x) + ge(x) — (o, x)
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Optimistic FPTL

Optimistic FTPL

> Regret

fe(xt —m|ant(x O(LV'T)

IIM\i

L; is Lipschitz constant of (g — f;)
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Min-Max Games

Non-Convex Non-Concave Games

» Two player zero-sum game

min max F(x, y)
x .y

F(-,y) non-convex in x, F(x,-) non-concave in y
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Min-Max Games

Non-Convex Non-Concave Games

» Two player zero-sum game

min max F(x, y)
x .y

F(-,y) non-convex in x, F(x,-) non-concave in y

» Both players use online learning algorithms against each other
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Min-Max Games

Non-Convex Non-Concave Games

» Two player zero-sum game

min max F(x, y)
x .y

F(-,y) non-convex in x, F(x,-) non-concave in y

» Both players use online learning algorithms against each other

Lipschitz + Smooth
FTPL o(T'72)
Optimistic FTPL (g; = f;_1) o(T )

Table: Rate of convergence to equilibirum
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Min-Max Games

Conclusion

» FTPL achieves optimal O(+v/T) regret for online non-convex
learning

» Optimistic FTPL can provide better rates if losses are
non-adversarial
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Min-Max Games

Conclusion

» FTPL achieves optimal O(+v/T) regret for online non-convex
learning

» Optimistic FTPL can provide better rates if losses are
non-adversarial

Questions?
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