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= otudy the implicit regularization properties of optimization techniques. - The paths need not always lie close to each other.

Theorem 1 Let f be m strongly convex and M smooth and c = mQJr—mM Moreover, let the « Converge to different points
T@ng,lCI,TZ’ZCLtZ.OTL penalty 1 and time t be related thfr'ough the relation y(t) — % (eCMt — 1) Then, o Regularization path always CONnverges to closest minimizer to initialization pOiIlt, whereas GD may not.

- Explicitly connect their optimization paths to the regularization paths ot

corresponding regularized problems.

= Strongly Convex Losses: Both the paths are point-wise close to each other. 16(t) — Bw(t)]|s < IV f(60)]]2 o—mt C = Counterexample: . -
- Consequences: Obtain excess risk of iterates of GD, early stopping rules for risk . N eMt 4 ¢ — 1 Eéﬁ%ﬁ‘:wg
minimization.
T+ 1)
« Convex Losses: The paths need not always lie close to each other. - When m = M, both the paths are the same. flx,y) = ; n 10)0, for y > 100, (xo,y0) = (2,1). - 1
. ' 1 1 ' _ R —mt __ .,—cMt | |
For linear classification with convex surrogates, the paths are close to each other. Both the paths are within O(e ce ) of each other lim 6(t) = (=1,1.02), Jim 8(v) = (=1, 1).
- Barly stopping GD has regularization effect. =00
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« Ambiguity in behavior of Test loss vs Iterations
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S 0.2 Theorem 3 Assume the data D,, is linearly separable. Suppose we use exponential loss to learn a linear
é 0 classifier. Suppose the reqularization parameter v and time t are related as v(t) =t. Then for any t > 0, we
- T have {
i 0 | Margin(0(t)) — Margin(0(v(t)))| < O],
= -0.1 log
g Iterations 0 where margin of a classifier is the distance of closest point to the decision boundary.
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Setup Theorem 2 Fort < . log (1 | 2|,%”g|?;ﬂ>“2), GD iterates 0(t) satisfy (2) Margin of 6(1). 6(111)) vs f S (D) Wi 101 = i 10 v
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« Gradient Descent/Flow on f(@) H@(t) . Q*HQ < HVRTL(QO)HQ (e—mt | c | § e™" : HQ*HQ
d - m 1 —c—eMt) ¢l — e—cMi
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- Corresponding Regularized Objective: « Roughly speaking, at t = O (log (1 | 2||$ }Q@ZQ*)H)) we have Connected
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- Regularization Path: {8(v)}72, Corollary 1 Suppose the covariate vector x has a norgnal distribution with mean 0 and Strongly Mirror Yes Pa].rameter O(eMt/a _ 1) O(e=mt/B — ce=cMt/a)
identity covariance matriz. Then at t = O (10g (1 + c%%%)), the iterate 0(t) satisfies Convex Descent Distance
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where € is less than 0.1. with exp. loss Descent €S algH t (@)




