Connecting Optimization and Regularization Paths

Arun Sai Suggala, Adarsh Prasad, Pradeep Ravikumar
Carnegie Mellon University

Contributions

Study the implicit regularization properties of optimization techniques
Explicitly connect their optimization paths to the regularization paths of Corresponding regularized problems.

Strongly Convex Losses: Both the paths are point-wise close to each other

- Consequences: Obtain excess risk of iterates of GD, early stopping rules for risk minimizization

Convex Losses: The paths need not always lie close to each other
. For linear classification with convex surrogates, the paths are close to each other.

Motivation and Setup
Ambiguity in behavior of Test loss vs Iteration

Setup

Gradient Descent/Flow on $f(\theta)$:
$\frac{d}{d t} \theta(t)=-\nabla f(\theta(t)), \quad \theta(0)=\theta_{0}$.
Corresponding Regularized Objective

$$
\theta(\nu)=\arg \min f(\theta)+\frac{1}{2 \mu_{\theta}}\left\|\theta-\theta_{0}\right\|_{2}^{2} .
$$

- GD Path: $\{\theta(t)\}_{t=0}^{\infty}$.

Regularization Path: $\{\theta(\nu)\}_{\nu=0}^{\infty}$.

Strongly Convex Loss

$$
\begin{aligned}
& \text { Theorem } 1 \text { Let } f \text { be } m \text { strongly convex and } M \text { smooth and } c=\frac{2 m}{m+M} \text {. Moreover, let the } \\
& \text { regularization penalty } \nu \text { and time } t \text { be related through the relation } \nu(t)=\frac{1}{c m}\left(e^{c M t}-1\right) \text {. Then } \\
& \qquad\|\theta(t)-\theta(\nu(t))\|_{2} \leq \frac{\left\|\nabla f\left(\theta_{0}\right)\right\|_{2}}{m}\left(e^{-m t}-\frac{c}{e^{c M t}+c-1}\right)
\end{aligned}
$$

When $m=M$, both the paths are the same Both the paths are within $O\left(e^{-m t}-c e^{-c M t}\right)$ of each other
Early stopping GD has regularization effect

Figure 1: Logistic Regression with inseparable data
Excess Risk of GD Iterates

$R(\theta), R_{n}(\theta)$ - population, empirical risks, θ^{*} - true parameter

Theorem 2 For $t \leq \frac{1}{c M} \log \left(1+\frac{c m\| \|^{*} \|^{2}}{2 \| \nabla R_{n}\left(\theta^{*} \|_{2} \mid\right.}\right)$, GD iterates $\theta(t)$ satisfy $\left\|\theta(t)-\theta^{*}\right\|_{2} \leq \frac{\left\|\nabla R_{n}\left(\theta_{0}\right)\right\|_{2}}{m}\left(e^{-m t}+\frac{c}{1-c-e^{c M t} t}\right)+\frac{3}{c 1-e^{-c M t} \|}\left\|\theta^{-c M t}\right\|_{2}$.

Roughly speaking, at $t=O\left(\log \left(1+\frac{m\| \|\left\|^{*}\right\|}{2 \| R_{n}\left(\theta^{*}\| \|\right.} \|\right)\right.$ we have

$$
\left\|\theta(t)-\theta^{*}\right\|_{2}=O\left(\left(e^{-m t}-c e^{-M t}\right)\left\|\theta^{*}\right\|+\left\|\nabla R_{n}\left(\theta^{*}\right)\right\|\right)
$$

Linear Regression - Early Stopping Rule

Corollary 1 Suppose the covariate vector x has a normal distribution with mean 0 and identity covariance matrix. Then at $t=O\left(\log \left(1+c_{1}^{\left.2\| \|^{\theta} \theta^{2}\right|^{2} n} \sigma_{p}\right)\right.$, the iterate $\theta(t)$ satisfies

$$
\left\|\theta(t)-\theta^{*}\right\|_{2}^{2} \leq(1+\epsilon)\left[\frac{\left\|\theta^{*}\right\|^{2}}{\left.\left\|\theta^{*}\right\|^{2}+\frac{\sigma_{2}^{2}}{n}\right]}\right] \frac{\sigma^{2} p}{n},
$$

Convex Loss

The paths need not always lie close to each other

Converge to different points
Regularization path always converges to closest minimizer to initialization point, whereas GD may not Counterexample

$$
\begin{gathered}
f(x, y)=\frac{(x+1)^{2}}{y+100} \text {, for } y>100, \quad\left(x_{0}, y_{0}\right)=(2,1) \\
\lim _{t \rightarrow \infty} \theta(t)=(-1,1.02), \quad \lim _{\nu \rightarrow \infty} \theta(\nu)=(-1,1) .
\end{gathered}
$$

Linear Classification

Theorem 3 Assume the data D_{n} is linearly separable. Suppose we use exponential loss to learn a linear lassifier. Suppose the regularization parameter ν and ime t are related as $\nu(t)=t$. Then for any $t \geq 0$, we

$$
\operatorname{Margin}(\theta(t))-\operatorname{Margin}(\theta(\nu(t))) \left\lvert\, \leq O\binom{1}{\log t}\right.,
$$

where margin of a classifier is the distance of closest point to the decision boundary.

Summary

Table of Connections

Problem	Algorithm to	Connected to Regularized Problem?	Metric	$\nu(t)$	Connection
Strongly Convex	Gradient Descent	Yes	Parameter Distance	$O\left(e^{c M t}-1\right)$	$O\left(e^{-m t}-c e^{-c M t}\right)$
Strongly Convex	Mirror Descent	Yes	Parameter Distance	$O\left(e^{c N t / \alpha}-1\right)$	$O\left(e^{-m t / \beta}-c e^{-c M t / \alpha}\right)$
Convex	Gradient Descent	No	-		
Classification with exp. loss	Gradient Descent	Yes	Margin	$\frac{1}{t}$	$O\left(\frac{1}{\log t}\right)$

