Connecting Optimization and Regularization Paths

Arun Sai Suggala, Adarsh Prasad, Pradeep Ravikumar

Carnegie Mellon University

Contributions

- Study the **implicit** regularization properties of optimization techniques.
- Explicitly connect their optimization paths to the regularization paths of corresponding regularized problems.
- Strongly Convex Losses: Both the paths are point-wise close to each other.
- Consequences: Obtain excess risk of iterates of GD, early stopping rules for risk minimization.
- Convex Losses: The paths need not always lie close to each other.
- For linear **classification** with convex surrogates, the paths are close to each other.

Motivation and Setup

Ambiguity in behavior of Test loss vs Iterations

Setup

• Gradient Descent/Flow on $f(\theta)$:

$$\frac{d}{dt}\theta(t) = -\nabla f(\theta(t)), \quad \theta(0) = \theta_0.$$

Corresponding Regularized Objective:

$$\underline{\theta}(\nu) = \arg\min_{\theta} f(\theta) + \frac{1}{2\nu} \|\theta - \theta_0\|_2^2.$$

- GD Path: $\{\theta(t)\}_{t=0}^{\infty}$.
- Regularization Path: $\{\underline{\theta}(\nu)\}_{\nu=0}^{\infty}$.

Strongly Convex Loss

Theorem 1 Let f be m strongly convex and M smooth and $c = \frac{2m}{m+M}$. Moreover, let the regularization penalty ν and time t be related through the relation $\nu(t) = \frac{1}{cm} \left(e^{cMt} - 1 \right)$. Then

$$\|\theta(t) - \underline{\theta}(\nu(t))\|_{2} \le \frac{\|\nabla f(\theta_{0})\|_{2}}{m} \left[e^{-mt} - \frac{c}{e^{cMt} + c - 1}\right]$$

- When m = M, both the paths are the same.
- Both the paths are within $O(e^{-mt} ce^{-cMt})$ of each other
- Early stopping GD has **regularization** effect.

Figure 1: Logistic Regression with inseparable data

Excess Risk of GD Iterates

• $R(\theta), R_n(\theta)$ - population, empirical risks, θ^* - true parameter.

Theorem 2 For
$$t \leq \frac{1}{cM} \log \left(1 + \frac{cm \|\theta^*\|}{2\|\nabla R_n(\theta^*)\|_2} \right)$$
, GD iterates $\theta(t)$ satisfy
$$\|\theta(t) - \theta^*\|_2 \leq \frac{\|\nabla R_n(\theta_0)\|_2}{m} \left(e^{-mt} + \frac{c}{1 - c - e^{cMt}} \right) + \frac{3}{c} \frac{e^{-cMt}}{1 - e^{-cMt}} \|\theta^*\|_2.$$

• Roughly speaking, at $t = O\left(\log\left(1 + \frac{m\|\theta^*\|}{2\|\nabla R_n(\theta^*)\|}\right)\right)$ we have $\|\theta(t) - \theta^*\|_2 = O\left(\left(e^{-mt} - ce^{-Mt}\right)\|\theta^*\| + \|\nabla R_n(\theta^*)\|\right)$

Linear Regression - Early Stopping Rule

Corollary 1 Suppose the covariate vector x has a normal distribution with mean 0 and identity covariance matrix. Then at $t = O\left(\log\left(1 + c_1^{2\|\theta^*\|^2} \frac{n}{\sigma^2}\right)\right)$, the iterate $\theta(t)$ satisfies

$$\|\theta(t) - \theta^*\|_2^2 \le (1 + \epsilon) \left[\frac{\|\theta^*\|^2}{\|\theta^*\|^2 + \frac{\sigma^2 p}{n}} \right] \frac{\sigma^2 p}{n},$$

where ϵ is less than 0.1.

Convex Loss

- The paths need not always lie close to each other.
- Converge to different points
- Regularization path always converges to **closest** minimizer to initialization point, whereas GD may not.
- Counterexample:

$$f(x,y) = \frac{(x+1)^2}{y+100}, \text{ for } y > 100, \quad (x_0, y_0) = (2, 1).$$

$$\lim_{t \to \infty} \theta(t) = (-1, 1.02), \quad \lim_{\nu \to \infty} \underline{\theta}(\nu) = (-1, 1).$$

Linear Classification

Theorem 3 Assume the data D_n is linearly separable. Suppose we use exponential loss to learn a linear classifier. Suppose the regularization parameter ν and time t are related as $\nu(t) = t$. Then for any $t \geq 0$, we have

$$|Margin(\theta(t)) - Margin(\underline{\theta}(\nu(t)))| \le O\left(\frac{1}{\log t}\right),$$

where margin of a classifier is the distance of closest point to the decision boundary.

Table of Connections

