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Contributions

• Study the implicit regularization properties of optimization techniques.
•Explicitly connect their optimization paths to the regularization paths of
corresponding regularized problems.

•Strongly Convex Losses: Both the paths are point-wise close to each other.
•Consequences: Obtain excess risk of iterates of GD, early stopping rules for risk
minimization.

•Convex Losses: The paths need not always lie close to each other.
• For linear classification with convex surrogates, the paths are close to each other.

Motivation and Setup

•Ambiguity in behavior of Test loss vs Iterations
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Setup

•Gradient Descent/Flow on f (θ):
d

dt
θ(t) = −∇f (θ(t)), θ(0) = θ0.

•Corresponding Regularized Objective:

θ(ν) = argmin
θ
f (θ) + 1

2ν
‖θ − θ0‖2

2.

•GD Path: {θ(t)}∞t=0.

•Regularization Path: {θ(ν)}∞ν=0.

Strongly Convex Loss

Theorem 1Let f be m strongly convex and M smooth and c = 2m
m+M . Moreover, let the

regularization penalty ν and time t be related through the relation ν(t) = 1
cm

ecMt − 1
. Then

‖θ(t)− θ(ν(t))‖2 ≤
‖∇f (θ0)‖2

m

e
−mt − c

ecMt + c− 1



•When m = M , both the paths are the same.
•Both the paths are within O(e−mt − ce−cMt) of each other

• Early stopping GD has regularization effect.

Figure 1: Logistic Regression with inseparable data

Excess Risk of GD Iterates

•R(θ), Rn(θ) - population, empirical risks, θ∗- true parameter.

Theorem 2For t ≤ 1
cM log

1 + cm‖θ∗‖
2‖∇Rn(θ∗)‖2

, GD iterates θ(t) satisfy

‖θ(t)− θ∗‖2 ≤
‖∇Rn(θ0)‖2

m

e
−mt + c

1− c− ecMt

 + 3
c

e−cMt

1− e−cMt
‖θ∗‖2.

•Roughly speaking, at t = O
log

1 + m‖θ∗‖
2‖∇Rn(θ∗)‖


 we have

‖θ(t)− θ∗‖2 = O


e−mt − ce−Mt
 ‖θ∗‖ + ‖∇Rn(θ∗)‖



Linear Regression - Early Stopping Rule

Corollary 1Suppose the covariate vector x has a normal distribution with mean 0 and
identity covariance matrix. Then at t = O

log
1 + c2

1
‖θ∗‖2

σ2
n
p


, the iterate θ(t) satisfies

‖θ(t)− θ∗‖2
2 ≤ (1 + ε)


‖θ∗‖2

‖θ∗‖2 + σ2p
n


σ2p

n
,

where ε is less than 0.1.

Convex Loss

•The paths need not always lie close to each other.
• Converge to different points
• Regularization path always converges to closest minimizer to initialization point, whereas GD may not.

•Counterexample:

f (x, y) = (x + 1)2

y + 100
, for y > 100, (x0, y0) = (2, 1).

lim
t→∞

θ(t) = (−1, 1.02), lim
ν→∞ θ(ν) = (−1, 1).
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Linear Classification

Theorem 3Assume the data Dn is linearly separable. Suppose we use exponential loss to learn a linear
classifier. Suppose the regularization parameter ν and time t are related as ν(t) = t. Then for any t ≥ 0, we
have

|Margin(θ(t))−Margin(θ(ν(t)))| ≤ O


1

log t

 ,

where margin of a classifier is the distance of closest point to the decision boundary.
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(b) |Margin(θ(ν(t)))−Margin(θ(t))| vs t

Summary

Table of Connections

Problem Algorithm
Connected

to Regularized
Problem?

Metric ν(t) Connection

Strongly
Convex

Gradient
Descent Yes Parameter

Distance O(ecMt − 1) O(e−mt − ce−cMt)

Strongly
Convex

Mirror
Descent Yes Parameter

Distance O(ecMt/α − 1) O(e−mt/β − ce−cMt/α)

Convex Gradient
Descent No - - -

Classification
with exp. loss

Gradient
Descent Yes Margin 1

t O
 1
log t




