
Revisiting Adversarial Risk
Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, Pradeep Ravikumar

Carnegie Mellon University

Abstract

•Motivation: Existing definition of adversarial risk is not accurate.
• Assumes the true label doesn’t change after perturbation.
• Resulted in counter-intuitive claims about adversarial risk.

•Contribuations: Study a new definition of adversarial risk which is more accurate
• Incorporates perceptual similarity

•No trade-off between standard risk and the more accurate notion of adversarial risk.

•Understand conditions under which existing definition of adversarial risk is accurate
• Existing adversarial risk is equivalent to the new definition when the data has
margin.

•When the data doesn’t have a margin, adversarial training using existing definition
can result in loss of standard accuracy.

Motivation

•Need for incorporation of perceptual similarity in the definition of adversarial
perturbation
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•Counterintuitive conclusions using existing definition of adversarial risk

Standard
Accuracy

Adversarial
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Setup

•Binary classification: features x, label y ∈ {−1, 1}, classifier f .
• Standard risk

R(f ) = E(x,y)∼P [`(f (x), y)]

•Existing adversarial risk

Gadv(f ) = E(x,y)∼P

 max
δ:‖δ‖≤ε

`(f (x + δ), y)


New Adversarial Risk

•Measure robustness of any classifier with respect to a base classifier.
• Base classifier is a human classifier in many tasks.
• Captures the human notion of perceptual similarity in image classification tasks.

Definition 1 (Adversarial Perturbation)Let g be the base classifier. Then the
perturbation δx at x is adversarial for a classifier f , w.r.t base classifier g, if
‖δx‖ ≤ ε and

f (x) = g(x), g(x) = g(x + δx),

and
f (x + δx) 6= g(x).

Base Classifier (g)

Adversarial
Perturbation

Non-adversarial
Perturbation Learned Classifier (f)

Definition 2 (Adversarial Risk)The adversarial risk of a classifier f w.r.t base
classifier g is the fraction of points which can be adversarially perturbed

Radv(f ) = E


max
‖δ‖≤ε

g(x)=g(x+δ)

` (f (x + δ), g(x))− ` (f (x), g(x))


.

Adversarial Training

•A robust classifier can be obtained by minimizing the following joint objective
argmin
f∈F

R(f ) + λRadv(f ).

•The following Theorem shows there is no trade-off between standard and adversarial risks.

Theorem 1 (Main Result) Suppose the hypothesis class F is the set of all mea-
surable functions. Let the base classifier g be a Bayes optimal classifier. Then any
minimizer of

min
f∈F

R(f ) + λRadv(f ),

is also a minimizer of standard risk.

Relation to Existing Adversarial Risk

•When is the existing definition accurate?
• If the data has margin, existing definition is equivalent to the
new definition

• Or else, they are not equivalent.

•Trade-off between adversarial and standard risks, if
data has no margin.

! !
Margin

Theorem 2 (Informal) Suppose the hypothesis class F is the set of all measurable
functions. Then any minimizer of

min
f∈F

R(f ) + λGadv(f )

for any λ ≥ 0, is also a minimizer of standard risk iff the data has margin.

•A simple example illustrating importance of margin:
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Importance of Adversarial Training

•Theoream 1 shows that the minimizers of adversarial training objective are also the
minimizers of standard risk.

•Question: Do we really need to perform adversarial training?
Yes!!

A simple example:
•Data is separable and lies in a low dimensional space.
•There exist classifiers with 0 standard risk but with
very high adversarial risk.

Robustness of Complex Models

•Use insights from Theorem 1 to explain an interesting practical phenomenon.
• Standard training with increasing model complexity can result in more robust models.
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•Adversarial training with increasing model complexity can result in more accurate models.
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