Revisiting Adversarial Risk

Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, Pradeep Ravikumar

Carnegie Mellon University

Abstract

- Motivation: Existing definition of adversarial risk is not accurate.
- Assumes the true label doesn't change after perturbation.
- Resulted in counter-intuitive claims about adversarial risk.
- Contribuations: Study a new definition of adversarial risk which is more accurate
- Incorporates perceptual similarity
- No trade-off between standard risk and the more accurate notion of adversarial risk.
- Understand conditions under which existing definition of adversarial risk is accurate
- Existing adversarial risk is **equivalent** to the new definition when the data has margin.
- When the data doesn't have a margin, adversarial training using existing definition can result in loss of standard accuracy.

Motivation

• Need for incorporation of **perceptual similarity** in the definition of adversarial perturbation

• Counterintuitive conclusions using existing definition of adversarial risk

Setup

- Binary classification: features \mathbf{x} , label $y \in \{-1, 1\}$, classifier f.
- Standard risk

$$R(f) = \mathbb{E}_{(\mathbf{x},y) \sim P} \left[\ell(f(\mathbf{x}), y) \right]$$

Existing adversarial risk

$$G_{ ext{adv}}(f) = \mathbb{E}_{(\mathbf{x},y) \sim P} \left[\max_{oldsymbol{\delta}: \|oldsymbol{\delta}\| \leq \epsilon} \ell(f(\mathbf{x} + oldsymbol{\delta}), y)
ight]$$

New Adversarial Risk

- Measure robustness of any classifier with respect to a **base classifier**.
- Base classifier is a human classifier in many tasks.
- Captures the human notion of perceptual similarity in image classification tasks.

Definition 1 (Adversarial Perturbation) Let g be the base classifier. Then the perturbation $\boldsymbol{\delta}_{\mathbf{x}}$ at \mathbf{x} is adversarial for a classifier f, w.r.t base classifier g, if $\|\boldsymbol{\delta}_{\mathbf{x}}\| \leq \epsilon \ and$

$$f(\mathbf{x}) = g(\mathbf{x}), \quad g(\mathbf{x}) = g(\mathbf{x} + \boldsymbol{\delta}_{\mathbf{x}}),$$

 $\mid and \mid$

$$f(\mathbf{x} + \boldsymbol{\delta}_{\mathbf{x}}) \neq g(\mathbf{x}).$$

Definition 2 (Adversarial Risk) The adversarial risk of a classifier f w.r.t base classifier g is the fraction of points which can be adversarially perturbed

$$R_{adv}(f) = \mathbb{E} \left[\max_{\substack{\|\boldsymbol{\delta}\| \le \epsilon \\ g(\mathbf{x}) = g(\mathbf{x} + \boldsymbol{\delta})}} \ell\left(f(\mathbf{x} + \boldsymbol{\delta}), g(\mathbf{x})\right) - \ell\left(f(\mathbf{x}), g(\mathbf{x})\right) \right].$$

Adversarial Training

• A robust classifier can be obtained by minimizing the following joint objective

$$\underset{f \in \mathcal{F}}{\operatorname{argmin}} R(f) + \lambda R_{\operatorname{adv}}(f).$$

• The following Theorem shows there is no trade-off between standard and adversarial risks.

Theorem 1 (Main Result) Suppose the hypothesis class \mathcal{F} is the set of all measurable functions. Let the base classifier g be a Bayes optimal classifier. Then any minimizer of

$$\min_{f \in \mathcal{F}} R(f) + \lambda R_{adv}(f),$$

is also a minimizer of standard risk.

Relation to Existing Adversarial Risk

- When is the existing definition accurate?
- If the data has margin, existing definition is equivalent to the new definition
- Or else, they are not equivalent.
- Trade-off between adversarial and standard risks, if data has no margin.

Theorem 2 (Informal) Suppose the hypothesis class \mathcal{F} is the set of all measurable functions. Then any minimizer of

$$\min_{f \in \mathcal{F}} R(f) + \lambda G_{adv}(f)$$

 $\min_{f \in \mathcal{F}} R(f) + \lambda G_{adv}(f)$ for any $\lambda \geq 0$, is also a minimizer of standard risk **iff** the data has margin.

• A simple example illustrating importance of margin:

Importance of Adversarial Training

Yes!!

- Theoream 1 shows that the minimizers of adversarial training objective are also the minimizers of standard risk.
- Question: Do we really need to perform adversarial training?

A simple example:

- Data is separable and lies in a low dimensional space.
- There exist classifiers with 0 standard risk but with very high adversarial risk.

Robustness of Complex Models

- Use insights from Theorem 1 to explain an interesting practical phenomenon.
- Standard training with increasing model complexity can result in more robust models.

• Adversarial training with increasing model complexity can result in more accurate models.

