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Abstract

« Motivation: Existing definition of adversarial risk is not accurate.

- Assumes the true label doesn’t change after perturbation.
- Resulted in counter-intuitive claims about adversarial risk.

« Contribuations: Study a new definition of adversarial risk which is more accurate
- Incorporates perceptual similarity

= No trade-off between standard risk and the more accurate notion of adversarial risk.

« Understand conditions under which existing definition of adversarial risk is accurate

- Existing adversarial risk is equivalent to the new definition when the data has
margin.

« When the data doesn’t have a margin, adversarial training using existing definition
can result in loss of standard accuracy.

Motivation

» Need for incorporation of perceptual similarity in the definition of adversarial
perturbation

Original Noise Adversarial?
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Setup

= Binary classification: features x, label y € {—1, 1}, classifier f.
« Standard risk

R(f) = Exy~p [E(f(X),y)

« kixisting adversarial risk

Gaar(f) = By | pax €(f(x +0),y)

New Adversarial Risk

« Measure robustness of any classifier with respect to a base classifier.
= Base classifier is a human classifier in many tasks.
= Captures the human notion of perceptual similarity in image classification tasks.

Definition 1 (Adversarial Perturbation) Let g be the base classifier. Then the

perturbation 0x at X s adversarial for a classifier f, w.r.t base classifier g, if
|0x|| < € and

Q(X) — g(X + 5X)7
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Definition 2 (Adversarial Risk) The adversarial risk of a classifier f w.r.t base
classifier g is the fraction of points which can be adversarially perturbed

L max £(f(x+0),9(x)) — £(f(x), 9(x)).

9(x)=9g(x+9)

Adversarial Training

« A robust classifier can be obtained by minimizing the following joint objective

ar]ger%in R(f) 4+ AR.av(f).

= The following Theorem shows there is no trade-off between standard and adversarial risks.

Theorem 1 (Main Result) Suppose the hypothesis class F is the set of all mea-
surable functions. Let the base classifier g be a Bayes optimal classifier. Then any
minimaizer of

min R(f) + ARzau(f),

feF

s also a minimizer of standard risk.

Relation to Existing Adversarial Risk

 When is the existing definition accurate?

« If the data has margin, existing definition is equivalent to the
new definition

= Or else, they are not equivalent.

« Trade-off between adversarial and standard risks, if
data has no margin.

Theorem 2 (Informal) Suppose the hypothesis class F is the set of all measurable
functions. Then any minimizer of

tin B(f) + AGaal f)

for any A > 0, is also a minimizer of standard risk tff the data has margin.

« A simple example illustrating importance of margin:
Synthetic Data
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Importance of Adversarial Training

« Theoream 1 shows that the minimizers of adversarial training objective are also the
minimizers of standard risk.

« Question: Do we really need to perform adversarial training?

Yes!!

T2

A simple example:

« Data is separable and lies in a low dimensional space.

= There exist classifiers with 0 standard risk but with
very high adversarial risk.

Robustness of Complex Models

« Use insights from Theorem 1 to explain an interesting practical phenomenon.

« otandard training with increasing model complexity can result in more robust models.

MNIST ~ CIFAR10
= |

o
o

—+—epsilon = 0.01
—+—epsilon = 0.02

epsilon = 0.03
—+—epsilon = 0.05

i
~

o
»
!
o
[o'e) o
(&) ©

joint 0/1 risk
joint 0/1 risk
o
(00)

o

)V
o
N
o

., |—+—epsilon = 0.1 0.7 + —t—epsilon = 0.01 | -
t'""" ——4—1 ¢ |—+—epsilon = 0.15 —+—epsilon = 0.03
0 ' ' 0.65 - - - >
0 200 400 600 0 0.5 1 1.5 2
No. of hidden units Capacity Scale (VGG11)

« Adversarial training with increasing model complexity can result in more accurate models.
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