
1

Carnegie Mellon University

Complex queries in
distributed publish-
subscribe systems

Ashwin R. Bharambe,
Justin Weisz and

Srinivasan Seshan

Carnegie Mellon University

Outline
� Publish-subscribe systems
� MERCURY architecture
� Preliminary evaluation

� Scalability
� Performance

� Future work

Carnegie Mellon University

Publish-subscribe systems

� Challenges
� Subscription language - how to express “interests”?
� Routing mechanism - how is content routed and where is

it matched?

MatcherS P

?

Publication
Subscription

Matched
Publication

Carnegie Mellon University

Subscription language
� How to express interests?

� Channels or Subjects
� All content attributes

� Operators?
� Exact matches
� Range queries
� Regular expressions

Subject = MATH

Name = ‘A’ & Age < 25

Price = 350$

300$ � Price � 350$

Name ~= Ash[win]*B*

Carnegie Mellon University

MERCURY subscription
language

� Subscription =
list of (type, attribute, rel-op, value)

� Can implement boolean expressions
(AND/ORs)

(int, price, LESS_THAN, 300)
(string, name, EQUALS, “Opensig”)

� Publication =
list of (type, attribute, value)

Carnegie Mellon University

Example: Virtual reality

User

x � 50
x � 150
y � 150
y � 250

Interests

x 100
y 200

Events

(100,200)

(150,150)

(50,250)

Arena

Virtual World

2

Carnegie Mellon University

Routing mechanism
� Centralized?

� Easy to make publications “meet” subscriptions
� Single point of failure – not robust!

� Distributed?
� Where are subscriptions stored?
� How do publications “meet” subscriptions?
� Broadcast-based solutions not scalable
� Multicast groups

Carnegie Mellon University

Distributed routing - goals
� Scalability is a key goal
� Flooding anything is bad, bad, bad…
� System should not have hot-spot in terms of:

� Computational load – matching
� Subscriptions should be evenly distributed

� Number of packets routed or received
� Publications should be evenly distributed

� Yet – we should have low delivery delays!!

Carnegie Mellon University

Hashing
� Systems like Scribe use DHTs for scalability
� Why can’t we ?
� Exact matches vs. Range queries!

int x � 1
int x 	 10hash

Subscription

int x = 9hash

Publication

?

� How about generating 10 subscriptions ?
� Too many subscriptions
� Works for discrete-valued attributes only

Carnegie Mellon University

Attribute Hubs
� Divide range of an attribute into bins
� Each node responsible for range of attribute values

Hprice

[240, 320)

[80, 160)

[160, 240)
[0, 80)

Attribute Hub

� Hub-nodes connected
through a circular overlay

� Circle only for connectivity
� One hub per attribute
� Routing algorithm

� compare value in content
to my range

Carnegie Mellon University

Routing illustrated
� Send subscription to any one attribute hub
� Send publications to all attribute hubs

[0 , 8 0)

[2 1 0 , 3 2 0)

50
 x
 150
150
 y
 250

x 100
y 200

Hx

[2 4 0 , 3 2 0)

[8 0 , 1 6 0)

[1 6 0 , 2 4 0)

Hy

[0 , 1 0 5)

[1 0 5 , 2 1 0)

Subscription

Publication

Rendezvous
point

Carnegie Mellon University

Efficient routing
� Reduce number of hops
� Each hub-node maintains “small” number of

pointers to distant parts of the hub
� How to maintain these pointers?

� Send ACKs for publication receipts
� Various caching policies determine the structure

of the pointer table
� e.g., LRU, Uniform-spacing, Exponential-spacing

3

Carnegie Mellon University

Routing illustrated

[0 , 8 0)

[2 4 0 , 3 2 0)

[8 0 , 1 6 0)

[1 6 0 , 2 4 0)

Hx

x 100
y 200

Publication

[1 0 5 , 2 1 0)
Hy

[2 1 0 , 3 2 0)

[0 , 1 0 5)
ACK

AC
K

Carnegie Mellon University

Routing illustrated

[0 , 8 0)

[2 1 0 , 3 2 0)
x 100
y 200

Hx

[2 4 0 , 3 2 0)

[8 0 , 1 6 0)

[1 6 0 , 2 4 0)

Hy

[0 , 1 0 5)

[1 0 5 , 2 1 0)Publication

x: A � [80, 160)

y: B � [105, 210)

Pointer table

Carnegie Mellon University

Evaluation
� Workload
� Experimental setup
� Metrics

Carnegie Mellon University

Workload
� One of our target apps

multi-player games

� Model
� Virtual world as square
� Subscriptions as rectangles around current

positions

Carnegie Mellon University

Experimental setup
� Player movements simulated using mobility

models from ns-2
� Two hubs – x and y co-ordinates

� Half the nodes in each hub
� Uniform partition of range

Carnegie Mellon University

Metrics
� Scalability metric

load

� Number of publications routed by a node
� Averaged over time

� Performance metric

publication delivery
delay

� Time between sending of a publication and its
receipt by all subscribers

� Averaged over all subscribers of a publication
� Averaged over all publications

4

Carnegie Mellon University

Results: scalability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.6 0.8 1 1.2 1.4 1.6
Normalized load

Fr
ac

tio
n

of
 n

od
es

100 nodes
50 nodes
20 nodes � Ideal graph: delta

function
� Observed variation:

±12%

Carnegie Mellon University

Results: performance

0

5

10

15

20

25

20 nodes 50 nodes 72 nodes 100
nodes

200
nodes

D
el

ay
s

- i
n

se
cs

single
n-lru
n-uniform
nocache
graph-dia

� Without caching:
linear scaling

� Caching reduces
delays to near
optimal

� Workload effects ?

47.25

Cache size: log(n)

Carnegie Mellon University

Conclusions
� Expressive subscription language
� Decentralized architecture
� Scalability

� Avoids flooding of subscriptions and
publications – reduces network traffic

� Distributes publications and subscriptions
throughout the network – prevents swamping

Carnegie Mellon University

Future Work
� Load balancing

� Sensitive to data value
distribution

� Adapt ranges dynamically
according to the
distribution

� Affects pointer
management, caching,
etc.

x

P
r(

X
=x

)

Carnegie Mellon University

Future Work

� Perform sensitivity analysis for different kinds
of workloads

� Generic API for building applications on top
of MERCURY

� To be released soon
� Build a full-fledged distributed Quake-II

