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Outline
� Publish-subscribe systems
� MERCURY architecture
� Preliminary evaluation 

� Scalability
� Performance

� Future work
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Publish-subscribe systems

� Challenges
� Subscription language - how to express “interests”?
� Routing mechanism - how is content routed and where is 

it matched?
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Subscription language
� How to express interests?

� Channels or Subjects 
� All content attributes

� Operators? 
� Exact matches 
� Range queries 
� Regular expressions 

Subject = MATH

Name = ‘A’ & Age < 25

Price = 350$

300$ � Price � 350$

Name ~= Ash[win]*B*
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MERCURY subscription 
language

� Subscription =
list of (type, attribute, rel-op, value)

� Can implement boolean expressions 
(AND/ORs)

( int, price, LESS_THAN, 300 )
( string, name, EQUALS, “Opensig” )

� Publication =
list of (type, attribute, value)
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Example: Virtual reality

User

x � 50
x � 150
y � 150
y � 250

Interests

x 100
y 200

Events

(100,200)

(150,150)

(50,250)

Arena

Virtual World
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Routing mechanism
� Centralized?

� Easy to make publications “meet” subscriptions
� Single point of failure – not robust!

� Distributed?
� Where are subscriptions stored?
� How do publications “meet” subscriptions?
� Broadcast-based solutions not scalable
� Multicast groups
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Distributed routing - goals
� Scalability is a key goal
� Flooding anything is bad, bad, bad…
� System should not have hot-spot in terms of:

� Computational load – matching 
� Subscriptions should be evenly distributed

� Number of packets routed or received
� Publications should be evenly distributed

� Yet – we should have low delivery delays!!
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Hashing
� Systems like Scribe use DHTs for scalability
� Why can’t we ?
� Exact matches vs. Range queries!

int x � 1 
int x 	 10hash

Subscription

int x = 9hash

Publication

?

� How about generating 10 subscriptions ?
� Too many subscriptions
� Works for discrete-valued attributes only
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Attribute Hubs
� Divide range of an attribute into bins
� Each node responsible for range of attribute values

Hprice

[ 240, 320)

[ 80, 160)

[ 160, 240)
[ 0, 80)

Attribute Hub

� Hub-nodes connected 
through a circular overlay

� Circle only for connectivity
� One hub per attribute
� Routing algorithm

� compare value in content 
to my range
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Routing illustrated
� Send subscription to any one attribute hub
� Send publications to all attribute hubs
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Efficient routing
� Reduce number of hops
� Each hub-node maintains “small” number of 

pointers to distant parts of the hub
� How to maintain these pointers?

� Send ACKs for publication receipts
� Various caching policies determine the structure 

of the pointer table
� e.g., LRU, Uniform-spacing, Exponential-spacing
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Routing illustrated
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Routing illustrated
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x: A � [80, 160)

y: B � [105, 210)

Pointer table
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Evaluation
� Workload
� Experimental setup
� Metrics
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Workload
� One of our target apps 



multi-player games

� Model
� Virtual world as square
� Subscriptions as rectangles around current 

positions
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Experimental setup
� Player movements simulated using mobility 

models from ns-2
� Two hubs – x and y co-ordinates

� Half the nodes in each hub
� Uniform partition of range
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Metrics
� Scalability metric 



load

� Number of publications routed by a node 
� Averaged over time

� Performance metric 



publication delivery 
delay

� Time between sending of a publication and its 
receipt by all subscribers

� Averaged over all subscribers of a publication
� Averaged over all publications
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Results: scalability
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Results: performance
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� Without caching: 
linear scaling 

� Caching reduces 
delays to near 
optimal

� Workload effects ?

47.25

Cache size: log(n)
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Conclusions
� Expressive subscription language 
� Decentralized architecture
� Scalability

� Avoids flooding of subscriptions and 
publications – reduces network traffic

� Distributes publications and subscriptions 
throughout the network – prevents swamping
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Future Work
� Load balancing

� Sensitive to data value 
distribution

� Adapt ranges dynamically 
according to the 
distribution

� Affects pointer 
management, caching, 
etc.
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Future Work

� Perform sensitivity analysis for different kinds 
of workloads

� Generic API for building applications on top 
of MERCURY 

� To be released soon
� Build a full-fledged distributed Quake-II


