
1

MERCURY : A Sc alable
Publ ish-Subsc r ibe Syst em

for In t ernet Gam es

Ashwin R. Bharambe,
Sanjay Rao &

Srinivasan Seshan

Carnegie Mellon University

Current gam e arc h i t ec t ures
� Distributed broadcast-based (e.g., DOOM)

• Every update sent to all participants
� Advantages/disadvantages

+ No central server
- Waste of bandwidth
- Synchronized game state – difficult for players

to join at arbitrary times

Does not scale beyond small LANs

Current gam e arc h i t ec t ures
(c ont .)

� Centralized client-server (e.g., Quake)
• Every update sent to server who maintains “true”

state
� Advantages/disadvantages

+ Reduces overall bandwidth requirements
+ State maintenance, cheat proofing much easier
- Bottleneck for computation and bandwidth
- Single point of failure

“Most online games get stuck at about 6,000 players per server, and
players on one server can't talk to those on another, reducing the
appeal of an online-gaming community.” - www.redherring.com

Ideal arc h i t ec t ure

� No hot-spot in the system in terms of:
• Number of packets routed or received
• Computational load

� Most efficient use of available bandwidth
• Every player only receives “relevant” updates

Scalability

Out l ine
� Scalable game design
� Publish-subscribe systems
� Architecture of MERCURY – a distributed

publish-subscribe system
� Preliminary evaluation

• Scalability
• Performance

� Future work

Bandw idt h e f f ic ienc y
� Events happening in

“arena”
• Need updates of visible or

audible entities only
� Other relevant game

information
• Various scores
• Enemies, teammates
• Details about other terrain,

etc.

Player

(100,200)

(150,150)

(50,250)

Virtual World

Arena

2

Model ing a f i rs t person shoot ing
gam e

Player

x � 50
x � 150
y � 150
y � 250

Interests

x 100
y 200

Events

(100,200)

(150,150)

(50,250)

Arena

Virtual World

Goal arc h i t ec t ure

Implicit filtering at the server Messages explicitly filtered

Centralized-server architecture Ideal architecture

Player

updates

events

Player

updates

events &
interests

Intelligent
Network

Publish-Subscribe System

What is publ ish-subsc r ibe ?

� Publishers produce events or publications
� Subscribers register their interests via

subscriptions
� Network performs routing such that

• Publications “meet” subscriptions
• Publications delivered to appropriate subscribers

Subscription

Publications

Cr i t ic a l c om ponent s
� Subscription language

• Subjects vs. attribute/values
• Exact matches vs. regular expressions?

� Routing mechanism
• Where are subscriptions stored in the system?
• How are publications routed so that they “meet”

subscriptions?

Relat ed sys t em s
� Scribe, Herald

• Scalable, but –
• Restricted subscription language

� Siena, Gryphon
• Flexible subscription language, but –
• Poor scalability due to message flooding

Delicate balance between expressiveness of
language and scalability of routing

MERCURY : subsc r ip t ion language
� SQL-like
� Type, attribute name, operator, value

• Example: int x
�

200
� Attribute-values are sortable
� Sufficient for modeling games –

• Game arenas
• Player statistics, etc.

3

MERCURY : rout ing prot oc ol
� Each node responsible for

range of attribute values
� For each attribute, nodes

arranged into circle
� Each node compares value in

message to his range; and
routes along the circle

� Why not use hashing ?

Hx

[240, 320)

[80, 160)

[160, 240)
[0, 80)

Attribute Hub

Why not use hashing ?
� Hashing is good for exact

matches
� Want to support range queries
� Possible approach

• Hash each value in the range
• Problems

• Can only be used for discrete-valued
attributes

• Too many subscriptions

int x � 1
int x � 10

int x = 1

int x = 9

int x = 10

Rout ing i l lus t ra t ed
� Send subscription to any one attribute hub
� Send publications to all attribute hubs

[0 , 8 0)

[2 1 0 , 3 2 0)

50 � x � 150
150 � y � 250

x 100
y 200

Hx

[2 4 0 , 3 2 0)

[8 0 , 1 6 0)

[1 6 0 , 2 4 0)

Hy

[0 , 1 0 5)

[1 0 5 , 2 1 0)

Subscription

Publication

Rendezvous
point

Evaluat ion m et r ic s
� Scalability metric

�
load

• Number of publications routed by a node
• Averaged over time

� Performance metric
�

publication delivery
delay
• Time between sending of a publication and its

receipt by all subscribers
• Averaged over all subscribers of a publication

Sim ulat ion w ork load
� Modeling of a FPS game

• Virtual world = square
• Subscriptions = rectangles around current

positions
� Mobility models from ns-2 for modeling

player movements

Resul t s : sc a lab i l i t y
� Ideal case

• Every node routes
approx. equal #msgs

• Normalized load is
delta function at 1

� Observations
• Small load fluctuations

(± 12%) 	 good load
balancing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.6 0.8 1 1.2 1.4 1.6
Normalized load

Fr
ac

tio
n

of
 n

od
es

100 nodes
50 nodes
20 nodes

4

Resul t s : per form anc e

 Linear Scaling, however,

magnitude is high (~900ms)
• High number of Mercury level

hops
• O(n) worst case!

 Solution: maintain
exponentially spaced
pointers on the circle
• Can bring down delay to

O(log n) hops
0

0.2

0.4

0.6

0.8

1

20 50 100
Number of Nodes

D
el

iv
er

y
D

el
ay

 (s
ec

)

Routing Delay
Delivery Delay

Hy

[0 , 10 5)

[1 0 5 , 21 0)

[2 1 0 , 32 0)

Publisher

Subscriber

Delivery
delay

Routin
g

delay

Conc lus ions
� Subscription language expressive enough for

games
� Completely decentralized architecture
� Scalability

• Avoids flooding of subscriptions and publications
– reduces network traffic

• Distributes publications and subscriptions
throughout the network – prevents swamping

Fut ure Work

 Performance

• Simulation shows publication delivery delay scales linearly
• Need much better delay values (~300-400 ms) for real-time

game play
• Cached pointers and network aware placement of nodes �

delay competitive with centralized systems

 Realistic workloads

• Current load balancing depends on workload
• Introduce BOTs into Quake � collect traces

 Currently building a proof-of-concept system
• Quake-II+ prototype which uses MERCURY

St at e m aint enanc e
� Traditional pub-sub = filter

• No notion of an underlying persistent state
� Game has associated state
� Every publication

• Is matched against subscriptions and routed
• Acts as a write event on the underlying database
• Easily supported by Mercury by writing it at the

rendezvous point(s)

