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Abstract

Mostpastsolutionsfor detectingdenialof serviceattackgandiden-
tifying the perpetratorshave targetedend-nodevictims. However,
little attentionhasbeengivento this problemfrom anISP perspec-
tive. This paperexploresthe key challengesnvolvedin helpingan
ISP network detectattackson itself or attackson external sites
which usethe ISP network. We proposea detectionmechanism
whereeachrouterdetectdraffic anamoliesisingprofilesof normal
traffic constructedising streamsamplingalgorithms.In addition,
an|SP’s routersexchangeinformationwith eachotherto increase
confidencen their detectiondecisionsOurinitial resultsshav that
individual router profiles capturekey characteristic®of the traffic
effectively andhelpidentify anomalieswith low falsepositive and
falsenegative rates.We believe that profile constructionrcanbe ex-
tremelyefficient, supportingevenmulti-gigabitspeedsWe alsobe-
lieve that incrementaldeployment of suchtechniquess possible,
althoughit may signficantlyimpact the effectivenessof the dis-
tributedreinforceddecisionmaking.

1 Intr oduction

Distributed Denial of Service(DDoS) attackshave becomeanin-

creasinglyfrequentdisturbanceén todays Internet.Mary recentre-

searchefforts have explored designingmechanismdor detecting
suchattacksandidentifyingthe perpetratorsdowever, all theseso-
lutions are aimedat aiding end-nodevictims underattack.In this

work, we look atthe problemfrom the point of view of aninternet
ServiceProvider (ISP). Specifically we designmechanismshatal-

low ISPsto quickly andefficiently answetthefollowing questions:
(1) Is the ISP backbonsatself undera DDoS attack?(2) Is the ISP

network carryingmuch“useless™ traffic? (3) Which traffic is ma-
licious andwhatshouldbe doneto suchtraffic?

In today’s BGP-drivenInternet,large ASespeerwith otherASesat

multiple PoPs(Pointsof Presence)lf a paclet’s destinations not

within itself, an AS handsover the paclet to other ASesassoon
aspossible.This hot potatorouting may not usethe shortestroute
to the destinationDue to thesefactors,paclets goingto the same
destinationcantraversediverseanddisjoint pathsthroughan AS.

This“dispersion’malesit hardto detectDDoStraffic atary single
point, necessitating distributedapproactto the problem.

Ourapproacho this problemrelieson routerswithin the ISPiden-
tifying traffic patternviolations themseles. This is achieed by
building traffic profiles using streamsamplingalgorithmswhich
have anextremelysmallmemoryfootprint. By samplingover rela-
tively long time windows, normaltraffic profilesarecreatedwhile
currenttraffic profilesare constructecby usingsmallertime win-
dows. Wheneer the currentprofile doesnot corroboratewith the
normalone,arouterbecomesuspicious

The key challengeof this approachis making it robust. Canwe
ensurethat our profilesare detailedenoughthat maliciousattack-
ers cannotdisguisetheir attacktraffic as normaltraffic? How do
we avoid detectingnormalvariationsin traffic patterns(including

1Attack trafiic aimedat a certaindestinatiorthatis ultimately dropped
atthedestination.

unusuallashcrowds) asattacksFinally, cantheseprofilesbe col-
lectedefficiently without creatingnew opportunitiesfor attack?

Ourinitial resultsusingstream-samplingchemeso build profiles
shaw thatit is possibleto: 1) profile normaltraffic reasonablyac-
curately 2) identify anomalieswith low false-positre and false-
negative rates(locally, at the router), 3) consumelow perpaclet
computatiorandmemoryevenatvery high routerspeeds.

However, if we rely only on this mechanismsmall traffic pertur

bationswithin the ISP or in thetraffic will triggermary falsepos-
itives. We believe that this approachcanbe mademore robust by

having routerscommunicateheir suspiciongo otherroutersin the
backboneRoutersaggr@atethe suspiciongecevedfrom all other
routersbeforedecidingwhethera certaintraffic aggrejatebelongs
to an attackor not. The only way an attacler can circumwent this

mechanisnis to successfullyguisehertraffic soasto fit thenormal
profile at a large numberof routers.If the attacler just takesvery

few pathsthroughthe ISP network but still sendsalarge amountof

traffic, shewill beeasilycaughtBy choosingtheright setof statis-
tics to constitutethe normalprofiles,we canensurehatthe former
approachof mimicking mary profilesbecome®xtremelyhard.

We describean exampleof this approachn greaterdetailin Sec-
tion 2 andpresenta brief discussiorin Section3.

2 Profile-BasedDDoS Detection

It is clearlyinfeasibleto keeptraffic statisticsor every singledesti-
nationat a backboneouter Here,we considera traffic profile that
canbe collectedwith little overheadandshouldbe ableto detect
mostintruders.At ary pointof time, only high-trafic destinations
needbeconsideresincethoseexactly aretheoneswhicharelikely
to be underattack.Hence,eachrouterkeepstrack of destinations
whosetraffic occupiesgreaterthana fraction 6 of the capacityC
of the outgoinglink using a sample-and-holdlgorithm [2]. We
call thesedestinationgpopular and destinationsnot in this list as
unpopular

Traffic profilesat eachrouterare basicallya setof fingerprints F;
of the traffic to populardestinationsAn effective choiceof such
fingerprintsis the key to characterizingraffic streamsHowever,
computingarbitrary fingerprintsmight require excessie memory
and/orcomputation We have identified several fingerprintswhich
can be efficiently computedusing streamsampling algorithms.
Someof themare:

e Thetotal numberof bytesto thedestination; .

e Forvariousvalueof p, thenumberof /p prefixessourcingtraf-
fic to the destination.The motivation is that this set of fin-
gerprintscharacterizesource-subnedistribution and would
catchrandomsourcespoofingby anattacler.

e An approximationto the flow-lengthdistribution of traffic to
the destinationWe samplespecificpointson the flow-length
distribution by keepingtrack of the numberof sourcelP ad-
dresseghat sendmorethan 6, fraction of the total traffic to
the destinationfor variousvaluesof 6.



We usesample-and-hol¢R] andzeoethmomen{(F,) computation
[4, 1] algorithmsfor computingthesefingerprints.Eachstatisticis

computedoy samplingoverasmallinterval of time,aboutaminute.
To reflectthe typical day-of-weekandhourof-day traffic patterns,
routersconstructperhour, perweekdaynormal traffic profiles by

averagingthe statisticsover hourly periods.

Algorithm at Each Router. With thesestatisticsin hand, each
router R usesthefollowing algorithmfor a populardestination:

1. Let 7 bethe numberof bytesto the destinationin the base-
profileandr bethesamestatisticin currentsamplinginterval.
If 7 > 7, 4+ 60C, continueto next step.Otherwise stop.

2. For eachfingerprint F;, let v; denotethe value computedin
the currentsamplingintenal. Let 1, ando; denotethe mean
and standarddeviation valuesfor this fingerprint? If |v; —
wi| > zoi, thenflag(F;) = 1, elseflag(F;) = 0.z > 0 is
aparameteto thealgorithm.

3. Let conf denotethe confidencewith which therouter R sus-
pectsanattack.We setconf = 3. §(F:) * flag(F). o as-
signs“weights” to a fingerprint, dependingon the extentto
which that fingerprintcontributesto errors(false-positie or
negatives): 6 (F;) o ﬁ where err(F;) is the sum of
thefalsepositive andnegatve ratesfor F;. The ISP canper
form measurement® determinethe appropriated to config-
urerouterswith.

For each paclet, we needto perform the two operations:run
sample-and-holdZ2] to probabilisticallysampleonly large-volume
destinationsequiringonehash-tabléookupor updateandonebyte
operation;andif the paclet was sampledupdatestatisticsfor the
correspondinglestination For eachcountingstatistic,we needto
apply the algorithmin [4] involving one hash-tabldookup or up-
dateand3 byte operationslf we assumehatall the memoryoper
ationsareperformedin SRAM, profile computationconsumesgew
CPUcyclesandcansupportvery high datarates.

We needa slightly differentmechanisnfor destinationsvhich are
usuallyunpopularbut suddenlybecomepopular Sinceit is infea-
sibleto keepin-coretraffic statisticsfor suchdestinationsye store
their baseprofileson disk. This canbe doneby computingstatis-
tics for randomlysampledpacletsover time. Whena routerfinds
thatT > #C for adestinatiomotin its popularlist, it pagesn the
correspondindaseprofile from disk. If no suchprofile exists, all

fingerprintsareflagged Otherwise,it computeslagsand conf as
statedabore.

Distrib uted Detection. For eachdestinatiorwith conf > 0, each
router sendsthe (conf, dest) pair to its neighbors.On receving
sucha messagethe neighborsdiscardduplicatescomputethe ag-
gregate, Aggr of the conf valuesreceized perdestinationandfor-
ward non-duplicatesalongto their neighbors.f, for ary destina-
tion, Aggr exceedsa pre-definedthreshold,the router concludes
that the destinationis underattack.This “consensus’stagehelps
reducethe errorsin identification of attackseven further These
messagesould be sentusing speciallow-bandwidthout-of-band
ICMP messagebetweenrouters.Thesemessagebetweemneigh-
bors canbe authenticatedvith the useof a TTL of 255, asin [3]
andaretimed out periodically(every minute)unlessrefreshed.

Preliminary Results.We provide abrief setof resultsregardinglo-
cal profile constructiorandattackdetectiorfunctionalitydescribed
abore.We usetraffic generatethy popularattacktoolslike TFNand
Tr i n00 alongwith traffic tracedrom Abilenebackbonegoutersin
NS-2,varyingthenumberof spoofedbytesin sourcePsandtheat-
tack rate againstdestinationf differentlevels of popularity Our

2This informationis obtainedfrom the baseprofile.

resultsshaw that the profiles generatedy our samplingschemes
arevery stableandaccurateacrosgime over onehourperiods.The
fingerprintingschemeslsohave a very low falsepositive rate (we
usez = 1) of about2% for unpopulardestinationsandabout6%
for populardestinationsln addition, for unpopulardestinations,
irrespectve of the numberof spoofedoctetsor the rate (“reason-
ably” high) of attacktraffic, thefalsenegative rateis closeto zero.
For populardestinationsthe false negative rateis about20% for
low-rate,yet significant,attacksbut improvesrapidly asthe rate of
the attackis increaseduniformly true) acrossvarying numberof
spoofedsourcelP octets.Theseresultsfor the fingerprintingalgo-
rithmsarevery encouragingWe areyet to experimentallyanalyze
the consensualgorithm.

3 Discussion

We believe thatthe abore schemesandetectsubtleandirregular
changesn traffic patternsvhich may not be obvious from volume
alone.For example,the subnetcountfingerprintsprovide valuable
informationto distinguisha flashcrowd from a DDoS attack[5].

It is hardfor an attacler aiming to orchestratea DDoS attackon
a single machineor on the ISP infrastructureto circumwent the
abore mechanismSincethe fingerprintsat eachrouterkeeptrack
of detailslik e the flow-lengthdistribution andthetraffic dueto var
ioussourcesubnetsanattacler thatusesarbitrarily spoofedsource
IP addressesn his attackpacletsmakesdetection/trace-baodven
simpler Evenif the attacler only spoofsa smallnumberof source
IPsandstill orchestratea heary attack,the attackwill bedetected
at routerswherethe attacktraffic significantlyimpactsthe normal
operatiorof thelSPnetwork, albeitwith low confidenceMoreover,
the consensualgorithmhelpsimprove the detectionaccuray.

Noticethatit is possiblefor anattacler to “train” the normaltraf-

fic profilesover time to identify attacktraffic aslegitimate.We are
investigatingthe balancebetweenreactingto persistentchanges
in traffic and being susceptibleto this form of attack.Also, the

randomizationof the measuremenintervals (with a meanof one
minute) helpsensurethat the attacler cannotescapedetectionby

spreadingattacktraffic over consecutie intervals to avoid detec-
tion in eitherinterval.

We areinvestigatingseveral importantquestionshat still needto
be addressedTheseinclude identifying attacksthat could avoid
the measureprofiles, measuringthe exact space/computatione-
quirementson modernrouterarchitecturesand measuringcorver-
gence/dectivenesof theconsensualgorithm.We arealsoconsid-
ering partial or incrementaldeploymentissuessuchasidentifying
which subsebf routersprovide the bestdetectiorandtheimpactof
partialdeploymentonthe consensualgorithms Finally, we planto
validatethesealgorithmsby runningthemon real attackdatasets.
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