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Abstract
Mostpastsolutionsfor detectingdenialof serviceattacks(andiden-
tifying theperpetrators)have targetedend-nodevictims. However,
little attentionhasbeengivento thisproblemfrom anISPperspec-
tive.This paperexploresthekey challengesinvolvedin helpingan
ISP network detectattackson itself or attackson external sites
which use the ISP network. We proposea detectionmechanism
whereeachrouterdetectstraffic anamoliesusingprofilesof normal
traffic constructedusingstreamsamplingalgorithms.In addition,
an ISP’s routersexchangeinformationwith eachotherto increase
confidencein theirdetectiondecisions.Our initial resultsshow that
individual routerprofilescapturekey characteristicsof the traffic
effectively andhelp identify anomalieswith low falsepositive and
falsenegative rates.We believe thatprofile constructioncanbeex-
tremelyefficient,supportingevenmulti-gigabitspeeds.Wealsobe-
lieve that incrementaldeployment of suchtechniquesis possible,
althoughit may signficantly impact the effectivenessof the dis-
tributedreinforceddecisionmaking.

1 Intr oduction
DistributedDenial of Service(DDoS) attackshave becomean in-
creasinglyfrequentdisturbancein today’s Internet.Many recentre-
searchefforts have explored designingmechanismsfor detecting
suchattacksandidentifyingtheperpetrators.However, all theseso-
lutions areaimedat aiding end-nodevictims underattack.In this
work, we look at theproblemfrom thepoint of view of anInternet
ServiceProvider(ISP). Specifically, wedesignmechanismsthatal-
low ISPsto quickly andefficiently answerthefollowing questions:
(1) Is the ISPbackboneitself undera DDoSattack?(2) Is the ISP
network carryingmuch“useless”1 traffic? (3) Which traffic is ma-
liciousandwhatshouldbedoneto suchtraffic?

In today’s BGP-drivenInternet,largeASespeerwith otherASesat
multiple PoPs(Pointsof Presence).If a packet’s destinationis not
within itself, an AS handsover the packet to otherASesassoon
aspossible.This hot potatoroutingmaynot usetheshortestroute
to thedestination.Due to thesefactors,packetsgoing to thesame
destinationcantraversediverseanddisjoint pathsthroughan AS.
This “dispersion”makesit hardto detectDDoStraffic atany single
point,necessitatinga distributedapproachto theproblem.

Our approachto thisproblemrelieson routerswithin theISPiden-
tifying traffic patternviolations themselves. This is achieved by
building traffic profiles using streamsamplingalgorithmswhich
have anextremelysmallmemoryfootprint.By samplingover rela-
tively long time windows, normal traffic profilesarecreatedwhile
current traffic profilesareconstructedby usingsmallertime win-
dows. Whenever the currentprofile doesnot corroboratewith the
normalone,a routerbecomessuspicious.

The key challengeof this approachis making it robust. Can we
ensurethat our profilesaredetailedenoughthat maliciousattack-
ers cannotdisguisetheir attacktraffic as normal traffic? How do
we avoid detectingnormalvariationsin traffic patterns(including

1Attack traffic aimedat a certaindestinationthat is ultimatelydropped
at thedestination.

unusualflashcrowds)asattacks?Finally, cantheseprofilesbecol-
lectedefficiently without creatingnew opportunitiesfor attack?

Our initial resultsusingstream-samplingschemesto build profiles
show that it is possibleto: 1) profile normaltraffic reasonablyac-
curately, 2) identify anomalieswith low false-positive and false-
negative rates(locally, at the router),3) consumelow per-packet
computationandmemoryevenat veryhigh routerspeeds.

However, if we rely only on this mechanism,small traffic pertur-
bationswithin the ISPor in thetraffic will triggermany falsepos-
itives.We believe that this approachcanbe mademorerobust by
having routerscommunicatetheir suspicionsto otherroutersin the
backbone.Routersaggregatethesuspicionsreceivedfrom all other
routersbeforedecidingwhethera certaintraffic aggregatebelongs
to an attackor not. The only way an attacker cancircumvent this
mechanismis to successfullyguisehertraffic soasto fit thenormal
profile at a large numberof routers.If the attacker just takesvery
few pathsthroughtheISPnetwork but still sendsa largeamountof
traffic, shewill beeasilycaught.By choosingtheright setof statis-
tics to constitutethenormalprofiles,we canensurethattheformer
approachof mimicking many profilesbecomesextremelyhard.

We describean exampleof this approachin greaterdetail in Sec-
tion 2 andpresenta brief discussionin Section3.

2 Profile-BasedDDoSDetection
It is clearlyinfeasibleto keeptraffic statisticsfor everysingledesti-
nationat a backbonerouter. Here,we considera traffic profile that
canbe collectedwith little overheadandshouldbe ableto detect
mostintruders.At any point of time, only high-traffic destinations
needbeconsideredsincethoseexactlyaretheoneswhicharelikely
to be underattack.Hence,eachrouterkeepstrack of destinations
whosetraffic occupiesgreaterthana fraction

�
of the capacity �

of the outgoinglink usinga sample-and-holdalgorithm [2]. We
call thesedestinationspopular anddestinationsnot in this list as
unpopular.

Traffic profilesat eachrouterarebasicallya setof fingerprints ���
of the traffic to populardestinations.An effective choiceof such
fingerprintsis the key to characterizingtraffic streams.However,
computingarbitrary fingerprintsmight requireexcessive memory
and/orcomputation.We have identifiedseveral fingerprintswhich
can be efficiently computedusing streamsampling algorithms.
Someof themare:

� Thetotalnumberof bytesto thedestination,� .
� For variousvalueof � , thenumberof /� prefixessourcingtraf-

fic to the destination.The motivation is that this set of fin-
gerprintscharacterizessource-subnetdistribution andwould
catchrandomsourcespoofingby anattacker.

� An approximationto theflow-lengthdistribution of traffic to
thedestination.We samplespecificpointson theflow-length
distribution by keepingtrackof the numberof sourceIP ad-
dressesthat sendmorethan

�	�
fraction of the total traffic to

thedestination,for variousvaluesof
�
�

.
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Weusesample-and-hold[2] andzeroethmoment(��� ) computation
[4, 1] algorithmsfor computingthesefingerprints.Eachstatisticis
computedbysamplingoverasmallinterval of time,aboutaminute.
To reflectthetypical day-of-weekandhour-of-daytraffic patterns,
routersconstructper-hour, per-weekdaynormal traffic profilesby
averagingthestatisticsover hourly periods.

Algorithm at Each Router. With thesestatisticsin hand,each
router� usesthefollowing algorithmfor a populardestination:

1. Let ��
 be thenumberof bytesto thedestinationin thebase-
profileand� bethesamestatisticin currentsamplinginterval.
If ����� 
�� � � , continueto next step.Otherwise,stop.

2. For eachfingerprint ��� , let �	� denotethe valuecomputedin
thecurrentsamplinginterval. Let � � and � � denotethemean
and standarddeviation valuesfor this fingerprint.2 If � �	���
� � ������� � , then � �"!�#%$"� �'&�(*) , else � �+!,#%$"� �-&.(0/ . �1� / is
a parameterto thealgorithm.

3. Let 243�576 denotetheconfidencewith which therouter � sus-
pectsanattack.We set 243�586 (:9 �<; $"� �-&>= � �"!�#%$"� �?& . ; as-
signs“weights” to a fingerprint,dependingon the extent to
which that fingerprintcontributesto errors(false-positive or
negatives): ; $"� �-&A@ BC"DEDGFIH J'K where L<MNM�$"� �'& is the sum of
the falsepositive andnegative ratesfor ��� . The ISPcanper-
form measurementsto determinetheappropriate; to config-
urerouterswith.

For each packet, we need to perform the two operations:run
sample-and-hold[2] to probabilisticallysampleonly large-volume
destinationsrequiringonehash-tablelookupor updateandonebyte
operation;andif the packet wassampled,updatestatisticsfor the
correspondingdestination.For eachcountingstatistic,we needto
apply the algorithmin [4] involving onehash-tablelookup or up-
dateand3 byteoperations.If we assumethatall thememoryoper-
ationsareperformedin SRAM, profile computationconsumesfew
CPUcyclesandcansupportveryhigh datarates.

We needa slightly differentmechanismfor destinationswhich are
usuallyunpopularbut suddenlybecomepopular. Sinceit is infea-
sibleto keepin-coretraffic statisticsfor suchdestinations,we store
their baseprofileson disk. This canbe doneby computingstatis-
tics for randomlysampledpacketsover time. Whena routerfinds
that �O� � � for a destinationnot in its popularlist, it pagesin the
correspondingbaseprofile from disk. If no suchprofile exists,all
fingerprintsareflagged. Otherwise,it computesflagsand 243�576 as
statedabove.

Distrib uted Detection.For eachdestinationwith 2N3 576�� / , each
router sendsthe $P243�576�QSR�L<T4U & pair to its neighbors.On receiving
sucha message,theneighborsdiscardduplicates,computetheag-
gregate, V�W<W<M of the 243�586 valuesreceivedperdestinationandfor-
ward non-duplicatesalong to their neighbors.If, for any destina-
tion, V�W<W<M exceedsa pre-definedthreshold,the router concludes
that the destinationis underattack.This “consensus”stagehelps
reducethe errors in identificationof attackseven further. These
messagescould be sentusingspeciallow-bandwidthout-of-band
ICMP messagesbetweenrouters.Thesemessagesbetweenneigh-
borscanbe authenticatedwith the useof a TTL of 255,asin [3]
andaretimedout periodically(every minute)unlessrefreshed.

Preliminary Results.Weprovideabrief setof resultsregardinglo-
calprofileconstructionandattackdetectionfunctionalitydescribed
above.Weusetraffic generatedbypopularattacktoolslikeTFN and
Trin00 alongwith traffic tracesfrom Abilenebackboneroutersin
NS-2,varyingthenumberof spoofedbytesin sourceIPsandtheat-
tack rateagainstdestinationsof differentlevels of popularity. Our

2This informationis obtainedfrom thebaseprofile.

resultsshow that the profilesgeneratedby our samplingschemes
areverystableandaccurateacrosstimeover onehourperiods.The
fingerprintingschemesalsohave a very low falsepositive rate(we
use � (X) ) of about2% for unpopulardestinationsandabout6%
for populardestinations.In addition, for unpopulardestinations,
irrespective of the numberof spoofedoctetsor the rate (“reason-
ably” high) of attacktraffic, thefalsenegative rateis closeto zero.
For populardestinations,the falsenegative rate is about20% for
low-rate,yet significant,attacksbut improvesrapidly astherateof
the attackis increased(uniformly true) acrossvarying numberof
spoofedsourceIP octets.Theseresultsfor thefingerprintingalgo-
rithmsarevery encouraging.We areyet to experimentallyanalyze
theconsensusalgorithm.

3 Discussion
We believe that the above schemescandetectsubtleandirregular
changesin traffic patternswhich maynot beobviousfrom volume
alone.For example,thesubnetcountfingerprintsprovide valuable
informationto distinguisha flashcrowd from a DDoSattack[5].

It is hard for an attacker aiming to orchestratea DDoS attackon
a single machineor on the ISP infrastructureto circumvent the
above mechanism.Sincethefingerprintsat eachrouterkeeptrack
of detailslike theflow-lengthdistributionandthetraffic dueto var-
ioussourcesubnets,anattacker thatusesarbitrarilyspoofedsource
IP addressesonhis attackpacketsmakesdetection/trace-backeven
simpler. Evenif theattacker only spoofsa smallnumberof source
IPsandstill orchestratesa heavy attack,theattackwill bedetected
at routerswheretheattacktraffic significantlyimpactsthenormal
operationof theISPnetwork,albeitwith low confidence.Moreover,
theconsensusalgorithmhelpsimprove thedetectionaccuracy.

Notice that it is possiblefor anattacker to “train” thenormaltraf-
fic profilesover time to identify attacktraffic aslegitimate.We are
investigatingthe balancebetweenreactingto persistentchanges
in traffic and being susceptibleto this form of attack.Also, the
randomizationof the measurementintervals (with a meanof one
minute)helpsensurethat the attacker cannotescapedetectionby
spreadingattacktraffic over consecutive intervals to avoid detec-
tion in eitherinterval.

We areinvestigatingseveral importantquestionsthat still needto
be addressed.Theseinclude identifying attacksthat could avoid
the measureprofiles, measuringthe exact space/computationre-
quirementson modernrouterarchitecturesandmeasuringconver-
gence/effectivenessof theconsensusalgorithm.Wearealsoconsid-
eringpartial or incrementaldeployment issuessuchasidentifying
whichsubsetof routersprovide thebestdetectionandtheimpactof
partialdeploymentontheconsensusalgorithms.Finally, weplanto
validatethesealgorithmsby runningthemon realattackdatasets.
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