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Abstract 

Discriminative training methods are used in 
statistical machine translation to effectively 
introduce and combine additional knowledge 
sources within the translation process. Al-
though these methods are described in the ac-
companying literature and comparative 
studies are available for speech recognition, 
additional considerations are introduced when 
applying discriminative training to statistical 
machine translation. In this paper we pay spe-
cial attention to the comparison and formal-
ization of discriminative training criteria and 
their respective optimization methods with the 
goal of improving translation performance 
measured by the corpus level BLEU metric 
with a Viterbi beam based decoder. We frame 
this work within the current trends in dis-
criminative training and present reproducible 
results that highlight the potential as well as 
shortcomings of N-Best list based discrimina-
tive training. 

1 Introduction 

Statistical machine translation, like other natural lan-
guage process tasks, has developed a set of unique 
evaluation metrics that go beyond simply evaluating the 
number of errors that a system makes on a test set. 
While debates continue regarding the relative value of 
each competing metric, the BLEU [Papeneni, 2001] and 
NIST [Doddington, 2002] scores which consider system 
performance at the corpus level, rather at the individual 
sentence level, have shown their effectiveness in driving 
the development of statistical machine translation sys-
tems. These metrics have highlighted the need for more 
expressive models of translation and a framework to 
introduce additional knowledge sources within the 
translation process. The direction translation [Och, 
2002] approach which reduces to the traditional source 

channel model [Brown et al, 1993] when applied with 
only a translation and language model delivers this 
framework and provides a necessary formalism to the 
process of combining and optimizing additional knowl-
edge sources. Discriminative training that considers 
competing candidate translations from an N-Best list is 
used to find appropriate scaling factors for each addi-
tional knowledge source in the direct translation ap-
proach with the goal of improving the metric 
performance of the candidate translation chosen by the 
decoder [Vogel, 2003]. We consider these scaling fac-
tors within the decoding process rather than as a post 
processing re-ranking step, thereby creating additional 
considerations regarding the stability of the scaling fac-
tors. The choice of evaluation metric, the nature of the 
additional knowledge sources within the decoding proc-
ess and the implementation decisions taken in each 
component, determine the effectiveness of each dis-
criminative method. 
This paper will focus on comparing the formalism and 

practical considerations in effectively deploying Maxi-
mum Mutual Information [Bassat,1982] and Minimum 
Classification Error [Huang, Katagiri, 1992] training 
within a statistical machine translation context. We be-
gin by framing the discriminative training task for statis-
tical machine translation and survey directions of active 
research in the field. We discuss the impact that the cor-
pus level BLEU score has on the discriminative training 
criteria and the implementation requirements for opti-
mization methods that accommodate for such metrics. 
The process of generating N-Best lists from a Viterbi 
decoding using partial and full translation based knowl-
edge sources and then merging these lists across itera-
tions is detailed along with experimental results on 
widely distributed training and test data sets. We con-
clude with a discussion of future work and potentially 
promising directions in discriminative training. 
 
 



2 Direct Statistical Machine Translation 

Statistical machine translation presents the task of find-
ing a target language (“English”) sequence of word to-
kens e = e1…eS  that effectively translates a source 
language (“French”) sequence f = f1…fT. Under a zero-
one loss function would suggest that we choose e = ehat 
by considering all possible target language sequences e 
\in E and choose the e that has the highest probability of 
being a translation for f.  
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where  refers to the true conditional distribution 
of e given f. Using this decision rule to select from 
within the search space of all possible candidate transla-
tions minimizes the number of decision errors made 
under a zero-one loss function (which implies there is 
one correct translation, and several incorrect transla-
tions). This search process is performed by a decoder 
[CMU Statistical system] using an estimate 

( feP |

( )feP |θ  
of , and usually introduces pruning heuristics to 
reduce the search space. Finding  ranks all alterna-
tive candidate sequences according to 

( feP | )
*e

( )feP |θ . The 
top N in this ranked set is the so called N-Best list. It is 
clear that this decision rule does not explicitly model 
performance on an evaluation metric, but rather lever-
ages the effectiveness of estimate   in ranking 
all competing candidate sequences. [Kumar,Byrnes, 
2004] propose a Minimum Bayes Risk (MBR) decoding 
process that explicitly minimizes the expected value of 
the loss according to an evaluation metric for a training 
set. As stated in [Kumar,Byrnes, 2004], performing the 
search process and computing the expectation of the 
loss over the true distributions is computationally pro-
hibitive and they limit the use of their MBR decoder to 
re-ranking the N-Best list. [Shen, 2004] also proposes 
discriminative re-ranking on N-Best lists that focus on 
separating “good” and “bad” translations according to 
an evaluation metric. Our discussion will not focus on 
N-Best list re-ranking, but instead, will investigate 
methods that use the N-Best list as an approximation of 
the search environment within the decoder. We limit our 
scope to MAP decoders and determining model scaling 
factors  for   that improve perform-
ance on the BLEU metric.  
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Under the source channel approach presented in 
[Brown et al, 1993], the decision rule (1) is further de-
composed using the Bayes rules into  and( efP | ( )eP , 
referred to as the translation and language models re-
spectively. Within a decoder, the translation and lan-
guage model are usually combined as a log linear model 
with scaling factors which are tuned to bias the per-

formance of the system towards a particular evaluation 
metric. [Och, 2002] proposed modeling the direct trans-
lation probability ( )feP |θ  directly, allowing for exten-
sions to the two model approach without loss of 
generality. 
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Where  is a model feature score that represents some 

relationship between . In the source channel model 
we could use log forms of the translation and language 
models as model features. Henceforth we will omit the 
individual model subscripts and simply refer to 

 to represent the linear combination of all scal-
ing factors and their respective models features. We 
now discuss discriminative methods to find θ  on a 
training corpus such that decoding using the decision 
rule in equation (1) to decode a test set will improve 
performance as measured by the BLEU metric.  
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3 Discriminative Training 

[Normandin 1994] provided empirical evidence that 
discriminative training criteria could better recover from 
situations where incorrect model assumptions are made, 
since these criteria attempt to separate the class condi-
tional probabilities of the correct class  from the 
alternative classes 

*e
Ee∈'  from the N-Best list. 

 

3.1 Maximum Mutual Information 

The Maximum Mutual Information [Bassat, 1982] uses 
the evaluation metric to label “correct” classes  
and attempts to find θ  for  such that these 
correct classes are separated from the incorrect classes 

, and defines the an objective function over a set 
of N training source-target language sequence pairs. 
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Under the direct estimation approach, it is unnecessary 
to decompose ( )feP |θ  further, and this method re-
duces to the conditional maximum likelihood criteria 
allowing simple gradient based optimization techniques. 
The discrimination is implicit in   since in log 
form we are separating the scores of the metric specified 

( feP |θ )



“correct” translations and the competing candidates 
from the N-Best list. 
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MMIF is a smooth, differentiable function with gradient  

∑ ∑
∑

=
∈

∈

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−= N
n

nEk
ne

n
k
nm

nEk
ne

nf
k
neh

nf
k
neh

nnm
MMI feh

e

efeh
Nm

F
1 ),(.

),(.

),(.),(1
θ

θ

δ
δ

 
 
with respect to each dimension inm θ . Several tech-

niques for this kind of optimization are discussed in 
[Press et al, 2002] and implemented in the [GSL]. 

3.2 Minimum Classification Error 

The Minimum Classification Error [Juang, Katagiri, 
1992] criteria attempts to minimize the empirical error 
(as determined by the evaluation metric) of the decision 
rule, which is explicitly dependant on θ . To explicitly 
model this condition, we can define our MCE criterion 
as shown in [Och,2003] as… 
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where  is a function that assigns an error to 

the selected candidate sequence  with respect to a 
reference translation for that is available for each . 
The decision rule (2) is the same as (1) under the direct 
translation model. 
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MCE criteria are often smoothed into continuous, dif-
ferentiable functions that can be optimized with respect 
to θ  using conjugate gradient descents. This is usually 
accomplished by using a “softmax” operation to replace 
argmax as shown in [Schlueter, 2001] and a smooth 
error function, usually a sigmoid function to replace a 
zero-one loss function. A smooth MCE criterion can be 
optimized with gradient descent methods, while the 
form shown in equation X would typically require gra-
dient free optimization techniques such as Powell’s 
method or the Snelder-Mead simplex method as de-
scribed in [Press]. [Och2003] with the help of 
[Papeneni] shows that a much simpler optimization 
method is available that leverages the form of ( )feP |θ  
to optimize each dimension of θ  much more efficiently 

as detailed later in this paper. The criterion in equation 
X can be compared to Falsifying Training as described 
in [Shleuter] where =α ∞ and the is the 
smoothing function (albeit not smooth). This form al-
lows us to accurately estimate the empirical error of the 
same decision rule (2) used in the decoder on the train-
ing data and optimize 

),( *
nn reError

θ  to minimize this error. Al-
though this method is not guaranteed to converge on a 
globally optimal , [Schlueter, 2001] shows that the 
MCE criterion achieves a tighter error bound on the true 
Bayes error rate.  

*θ

[Zens,Ney] propose an alternative method where the 
error surface is evaluated using only  without regard 
for the alternatives available in the N-Best list. The em-
pirical error on the training data is estimated using the 
top candidate only and new values of are chosen by 
following the Simplex method described in [Press]. De-
coding again with the new value of  generates an-
other point on the training set error surface and repeated 
iterations find a locally optimal . 

*
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While the N-Best list based methods explore a larger 

region of the error surface after decoding the training 
set, they select  from the N-Best list only, which is an 
approximation to the true space of all candidate target 
language sequences. This approximation is potentially a 
function of several pruning and recombination parame-
ters that drive the decoder through the search space and 
influence the final N-Best list. Since the method de-
scribed in [Zens,Ney] works only with the top candi-
dates, the decision rule used to search the space is a 
more accurate representation of the decision process 
used in the decoding and optimization can operate on all 
parameters that play a role in the decoding, rather than 
just those that play a role in . The disadvantage 
of this method lies in the computational cost of repeat-
edly decoding and evaluating a training set especially 
when the Simplex method is typically one of the slowest 
to converge [Press et al, 2002].  
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We will now consider the MMI and MCE criteria (both 
N-Best list based methods) and specific considerations 
when applying them to statistical machine translation. 
 

4 Effect of the Evaluation Metric 

Both the MMI and MCE methods are inherently related 
to the choice of metric used to evaluation candidate 
translation. MMI uses the metric to label “correct” and 
“incorrect” translations, while the MCE explicitly 
evaluates candidates in the N-Best list that are chosen 
by the decision rule to minimize the error on these 
choices. Several evaluation metrics including word error 
rate, multi reference word error rate, BLEU and NIST 



are commonly used in statistical machine translation 
and [Och, 2003] presents empirical evidence that opti-
mizing  using a particular metric will yield the 
most improved results when evaluating the decision rule 
using the same metric. BLEU and NIST however, are 
evaluated at the corpus level and are not additive over 
individual sentences. This makes choosing the “correct” 
translation from the N-Best list for MMI difficult and 

 for MCE irrelevant. We focus on the 
BLEU score for the remainder of this paper.  

( feP |θ )
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As a reminder, to evaluate the BLEU score of a set of N 
translations , against a set of references  , we ac-
cumulate n-gram precision and closest reference length 
information for each  from  and compute the 
BLEU score as follows: 
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where counts the number of g-grams matched 
between the candidate being evaluated and the corre-
sponding reference, and  counts the number of 

g-grams suggested in , 
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size we want to consider. 

4.1 Effect on MMI 

For MMI we need to label a “correct” candidate transla-
tion for each source sentence from its corresponding N-
Best list of candidates, which we will call a configura-
tion. Determining a high scoring configuration becomes 
difficult under the BLEU metric since it operates on a 
set of candidates. Since BLEU scores are not cumula-
tive it is not sufficient to select candidates which are 
“locally correct” when only compared to other candi-
dates in the same N-Best list. Selecting the true optimal 
configuration on a training set would require a search 
through an exponential number of configurations, so we 
approximate this using an iterative approach. We begin 
with an initial configuration (usually the top ranked 
candidate in each N-Best list) and accumulate the rele-
vant statistics for this configuration. Starting with the 
first N-Best list, consider the impact on the training set 
score when selecting an alternative translation by sub-
tracting the statistics for the current configuration 
choice from the accumulated statistics and adding those 
for the alternative we are considering. Evaluate each 

alternative in the N-Best list in this fashion, settling on 
the one that results in the highest training set BLEU 
score. Repeat this process for the next source sentence, 
using the locally optimized configuration as a starting 
point and continue till there are no configuration 
changes made on the entire corpus. This is effectively a 
greedy search through the space of configurations and 
on our training data using 4-Gram BLEU evaluation we 
see convergence in 2-3 iterations. Pseudo-code detailing 
this search is shown below. It is important to note that 
this method will result in a locally optimal configura-
tion. This configuration specifies the “correct” candi-
date for each N-Best lists, and ties represent multiple 
“correct” hypotheses within an N-Best list. The configu-
ration also provides an estimate of the upper bound for 
the BLEU score on the training set. 

Algorithm 1 identification 
Require: N-Best list E Generates: configuration c 
1: c ←0, c’ ← c  
2: b = calculateBLEU(c); 
3: while c’ != c 
4:    c=c’ 
4:    for (n=1,...N)  
5:        foreach (k in NBestList(n)) 
6:              b’ = calculateBLEU(c’(n) ←k) 
7:              if (b’> b) { b=b’  c(n) ← k } 
8:        end foreach 
9:     end for 
10: end while 
      

 
 

4.2 Effect on MCE 

We need to refine our MCE criterion to account for the 
corpus level BLEU score. Instead of evaluating the error 
at each sentence, we evaluate the error (negative BLEU 
score) on the configuration selected by the decision 
process: 
 

),( *
NNMCE reErrorF =  

5 The Optimization Process 

5.1 MMI Optimization 

The MMI criterion is optimized using gradient based 
techniques. The only relevant consideration is 
over/under flow that might result when computing the 

 term. Depending on the sign and 

magnitude of the feature data term inside the sum might 
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overflow or underflow. We use the following decompo-

sition of  to prevent this issue: ∑
∈ nEk
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The arguments to the exponential terms are not re-
stricted to be the difference in scaled model feature 
scores between and , which limits the ability for 
the exponential calculation to underflow or overflow 
assuming that the scaled model features within a single 
N-Best list are relatively similar.  

k
ne 1

ne

5.2 MCE Optimization 

The MCE criteria as applied in [Och, 2003] and shown 
in equation X defines a non-smooth error surface in M-
dimensional space corresponding to θ . Powell’s 
method selects a dimension to optimize, while keeping 
all others fixed, and finds the value of mθ  that mini-
mizes the error on the training set, defining a start point 
in M-dimensional space to begin optimizing the next 
dimension. [Och, 2003] proposes an algorithm to sig-
nificantly reduce the number of evaluations in this 
greedy search through the M-dimensional space. Each 
candidate for a given sentence can be represented: 
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with the goal of optimizing over dimension . Each 
candidate translation in the N-Best list for a particular 
sentence defines a line in R

d

2 with respect to d and the 
total score. The set of candidates in the N-Best list for a 
given sentence defines a set of lines in R2 and the deci-
sion rule in (2) states that at a given value of , 

 is the line with the highest value of the total score. 

The selection of for each sentence at ultimately 

determines the error at . Our goal is to find 

such that the error is minimized at . Powell’s 
method would have us evaluating at several values of 

^
dd θθ =
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dθ to approximate this error surface. As described in 
[Och, 2003], we can significantly reduce the number of 
times we need to evaluate this error, by only focusing 

on values of dθ that could generate different error val-
ues. 
We know that the error can only change if we move to 

a dθ where the highest line is a different line than be-
fore, implying that we only have to evaluate the error at 
values in between the intersections that line the top sur-
face of the cluster of lines representing the N-Best list 
for each source sentence. The intersection between any 
two candidate lines and is found at: 1e 2e
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If we decide to search for these intersection points 

within a range [ ]rl, then we can start with the highest 
line at fee t ,maxarg ld =θ and search for intersections 
with all lines that have a steeper slope than this initial 
line. The intersection point that is closest to l , repre-
sents a critical value of 

^
dθ

dθ over which the top candidate 
for this sentence changes. Mark this intersection and 
repeat the process, looking for intersections on the new 
candidate line. Repeat until the right boundary is 
reached. 
Each N-Best list generates a set of “critical” values of 

 across which the error contribution from  might 
change. We then merge the set of critical values for all 
sentences by concatenating and sorting them all. In be-
tween pairs of boundaries, we know the error must stay 
constant since the same candidates are selected for all 
values of 

^
dθ

*
ne

dθ  within this boundary. This implies that we 
only have to evaluate the error within each pair of non-
identical boundaries once, to get a complete representa-
tion of the error surface with respect to dθ . When mov-
ing onto the next dimension, we set dθ  to the value that 
generated the lowest error. 
Although this implementation significantly reduces the 

number of times the error needs to be evaluated, we can 
improve timed performance further with some addi-
tional book keeping. Evaluating the training set error at 
a given dθ  involves evaluating  for each source sen-

tence and then accumulating statistics from  to com-
pute the BLEU score.  
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The selection information has already been computed 
when evaluating the intersection points. Starting at 

ld =θ  we considered intersections with all lines that 
have a steeper slope. Finding an intersection with a line 
with a steeper slope implies that the configuration will 
change over the intersection point. We can define a pair  
that Errorid ∆,,θ associates the change in error data that 

occurs when crossing over the intersection. For the thi



BLEU score we can store, for each n-gram size, the 
number of correct and suggested n-grams, as well as the 
length of the closest reference. Error deltas are then a 
set of deltas for each relevant statistic. 
 

 
Figure 1 Candidate translation in dimension d, 

and the critical intersections of one source sen-
tence. Labeling on the d-axis indicates the candi-
date that the decision rule would choose. 
 
When the Errorid ∆,,θ  pairs are merged over all 

source sentences and sorted according to the intersec-
tion, we can simply sum the error deltas as we cross 
intersection boundaries to track the current value of 
each statistic. If there are duplicate intersection points in 
the merged list, we must only consider the error once 
the error data has been summed for all duplicate inter-
section points (corresponding to changes in the configu-
ration from multiple source sentences). Select  as the 
midpoint of the interval corresponding to the lowest 
error and continue with the next direction. Termination 
conditions can be based on the number of iterations or 
successive reduction of error across iterations.  
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6 Re-Decoding with  *θ

Decoding the training set with  from MMI or MCE 
training will generate a new N-Best list for each source 
sentence. Depending on the nature of the pruning and 
recombination parameters applied within the decoder, 
this second list might differ considerably from the N-
Best list generated by initial 

*θ

θ , reflecting the local ap-
proximation of the candidate space represented by the 
N-Best list. N-Best lists can be merged across iterations 
to create a more complete representation of the target 
sequence search the space. There are two cases to deal 
with when merging N-Best lists. 
Case 1: A new target language candidate sequence is 

generated - Add the candidate sequence to the merged 
N-Best list using a dictionary based structure like a trie 
to conserve space and store the model feature data and 

relevant BLEU statistics at the leaf node for this target 
sequence. 
Case 2: A target sequence is generated that matches 

one already in the trie. - Compare the model feature data 
to those already at the leaf node corresponding to the 
target sequence and store the additional feature data. 
This new path corresponds to a different set of decision 
made by the decoder to generate the same sequence.  
Removing duplicate phrase or word translation pairs 

from the translation models used to decode the training 
data can reduce the number of candidate data points that 
have different model feature data but an identical target 
sequence. 
It is also important that the choice of  does not af-

fect general parameters of the decoding process. The 
common Viterbi beam search criterion is particularly 
affected by changes in . For example, one variety of 
beam search restricts the number of partial hypotheses 
that are expanded over the source sequence by only 
considering those that have scores within a fixed delta 
from the top partial hypothesis score at a given source 
word. The effect of this fixed delta beam changes as the 
scale of the partial hypothesis scores change. Changes 
to 

*θ

*θ

θ  affect the partial hypothesis scores within the de-
coding process thereby modified the pruning effect of 
the beam. In addition, if feature scores for are dependant 
on the length of the candidate hypothesis, then the beam 
has a different effect on sentences of different lengths.  
To keep the number of hypotheses considered in each 

decoding iteration constant, with respect toθ , we use a 
beam that considers a fixed number of partial hypothe-
ses at each source word. 
 

7 Experimental Results 

We evaluate the impact the MMI and MCE criterion 
have toward improvement on the BLEU score for Chi-
nese to English translation in the newswire domain us-
ing data available in the DARPA TIDES evaluations. 
We use three model features in , the log score 
of a language model built on a 20 million word mono-
lingual corpus, the log score of a translation model, and 
a sentence length model which simply counts the num-
ber of words generated.  

( feP |θ )

 We use the decoder and transducers as described in 
[CMU] with the beam modification described earlier. 
Table 1 details the data characteristics on the small and 
large track corpora from which transducers are built, 
and the training and set test, on which is trained and 
tested. 

*θ



 
Track #Pairs Chinese English 
Small 3540 90K 115K 
Large 77558 2.46M 2.69M 
Training 878 24360 - 
Test 919 26223 - 

 
Table 1: Corpus figures indicating no. of sentence 

pairs and number of Chinese and English word. 
 
On the Small and Large data track we begin with initial 

scaling factors [ 1,1,1= ]θ , fixed number of hypotheses 
beam of 10, recombination factors that consider the 
number of words translated; the coverage pattern; the 
language model state as described in [CMU]. We report 
the improvements in BLEU score due to each method as 
well as the locally optimal (max) BLEU score, for the 
small and large track for the training and test data along 
with the respective generating parameters. 
We fix the translation model parameter at 1 to get a 

better impression of the relative importance of each 
model. Summary statistics are shown in Tables 2,3 and 
a graph that details relevant scores across iterations is 
shown in Figure 1 where TM=Translation Model, 
LM=Language Model, SL=Sentence Length Model. 
 

 Params(TM, LM,SL) Max Train Test 
Base 1.00 1.00 1.00 0.224 0.159 0.163 
MCE 1.00 3.72 -0.04 0.261 0.180 0.182 
MMI 1.00 4.36 0.59 0.264 0.178 0.180 

Table 2: Small track results for the final  *θ

 
 Params(TM, LM,SL) Max Train Test 
Base 1.00 1.00 1.00 0.300 0.243 0.231 
MCE 1.00 1.97 -0.31 0.369 0.260 0.251 
MMI 1.00 NA NA NA NA NA 

Table 3: Large track results for the final 
*θ

  
The MMI method attempts to separate the top metric 

scoring hypothesis from competing hypothesis. The top 
metric scoring hypothesis typically represents transla-
tions with lower model costs (higher scores) than the 
other translations. This effect when considered on large 
data sets could lead to negative model scores. While 
good for N-Best list re-ranking this effect would prevent 
the decoder from exploring the target language search 
space efficiently. We experienced this issue here, and 
were unable to generate large track results for the MMI 
method and we consider this a shortcoming of the 
method when combined with pruned beam decoding. 
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Figure 2 Small track training and test scores, 

MCE: solid line, MMI dashed line, test score indi-
cated with * on line.  
 
BLEU scores for both models are significantly higher 

than the initial parameters and the MCE criterion seems 
to outperform the MMI criterion as expected on the 
small track and was able to generate large track results, 
while MMI was unable to. Significance testing shows 
that the improvements over the baseline are statistically 
significant over this data [Zhang, Vogel, 2004]. The 
difference between MMI and MCE in the small track is 
not statistically significant, (0.005 is the threshold on 
this dataset).  
Small changes in training set scores match quite 

closely with changes in test set scores implying that the 
optimal parameters do generalize over test sets. The 
progress of the MMI method over iterations is signifi-
cantly more erratic than the MCE method. We believe 
this comes from the model attempting to further sepa-
rate already high ranking top candidates, effectively 
over fitting on the N-Best list, and creating extreme 
parameter settings that are not effective in re-decoding 
the training data (an effect with is crippling on the large 
track). We see evidence of this effect when we look into 
the parameter setting that caused the plunge in score 
after the first iteration in the MMI criteria. 

[ ]4.31,2.182,1=θ  after the first iteration. While these 
values have significantly discriminated the top scoring 
candidate from the alternatives, they are not effective in 
the translation process.  
This problem could be addressed by using a sigmoid 

smoothing function to limit the effect of severe positive 
and negative discriminations in the MMI criterion. The 
MMI criterion is also inherently impaired since a local-
ized selection criterion that must be employed to deter-
mine “correct” candidates. By selecting only one 
candidate, the MMI criterion must discriminate this 
candidate from all other alternative, regardless of their 
relative scores. This effect is due to the implied zero-



one loss criterion employed in MMI. Alternative ap-
proaches could include taking into account relative rank 
in the N-Best list to weight the contribution to the dis-
criminative criterion. 

8 Conclusions 

Discriminative training applied to N-Best lists is an ef-
fective way to quickly approximate and model the error 
surface with respect to model parameters. In this work 
we have compared the formal models as well as empiri-
cal results from two classes of discriminative training 
with the aim of providing a clear framework for repro-
duction and discussion of results. Our contributions 
come in the form of detailing the important differences 
in formalism and practical considerations required to 
deliver improvements with these methods in the transla-
tion domain.  
Inspecting the maximum BLEU scores possible on the 

small and large data tracks showed that while discrimi-
native training has moved us towards these values, we 
are still significantly far away from making optimal use 
of the data available in the training corpora. It will be 
valuable to create methods to determine model specific 
upper bounds on discriminative training criteria with 
respect to specific evaluation metrics in the style of 
[Schlueter, 2001], allowing researchers to focus their 
efforts towards more accurate estimation of component 
models or more effective model combination and opti-
mization techniques. We expect to continue our work in 
showing the relationship between the formal and em-
pirical aspects of discriminative training when applied 
to statistical machine translation and hope that this work 
will promote this process in the community. 
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