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Abstract. Model-based reinforcement learning (MBRL) plays an im-
portant role in developing control strategies for robotic systems. How-
ever, when dealing with complex platforms, it is difficult to model sys-
tems dynamics with analytic models. While data-driven tools offer an
alternative to tackle this problem, collecting data on physical systems is
non-trivial. Hence, smart solutions are required to effectively learn dy-
namics models with small amount of examples. In this paper we present
an extension to Data As Demonstrator for handling controlled dy-
namics in order to improve the multiple-step prediction capabilities of
the learned dynamics models. Results show the efficacy of our algorithm
in developing LQR, iLQR, and open-loop trajectory-based control strate-
gies on simulated benchmarks as well as physical robot platforms.

Keywords: Reinforcement Learning, Optimal Control, Dynamics Learn-
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1 Motivation

Learning based approaches for controlling robotic systems, or more generally
autonomous agents, fall into two primary categories: model-based [1–3] and
model-free [4–7]. In this work, we focus on problems belonging to the former
category, where a system transition function – a dynamics model – is used to
guide the creation of a control policy. To generate low cost control policies, we
need dynamics models that accurately capture the evolution of the true under-
lying system. However, with the increasing complexity of robotic technologies, it
becomes difficult to robustly characterize robot dynamics a priori with simple
analytic models. To tackle this problem and to scale model-based control tech-
niques to new systems, prior work in dynamics learning has shown promising
results in the modeling of dynamics system either by augmenting physics-based
models [8] or through non-parametric, black-box learning [9].

Typically, the accuracy of data-driven dynamics models depends on the
amount of collected data. However, for many robotic systems, it can be labor
intensive and expensive to acquire large data-sets for training models. Hence, it
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is often desirable to improve model fidelity by observing fewer example trajec-
tories on the physical system. We propose a model-based reinforcement learning
(control) framework that reuses collected data to improve the learned dynamical
system models. We leverage Data As Demonstrator (DaD) [10] to generate
synthetic training examples for improving the learned dynamics model’s multi-
step prediction capabilities. However, the original DaD algorithm only handles
uncontrolled dynamics. Here, we extend DaD to also work with controlled sys-
tems. Our experimental results with this mehtod show it is possible to achieve
good control performance with less data.

2 Technical Approach

2.1 Preliminaries

In this work, we consider systems that operate as a Markov Decision Process
(MDP). The MDP is defined by states xt that follow an unknown state transi-
tion (dynamics) function f(xt, ut) → xt+1, where ut are controls (actions). We
additionally assume a known cost function c : xt, ut → R. Solving this MDP
consists of minimizing the (expected) cumulative cost over a time horizon T ,
which may be infinite, by finding a control policy π(xt):

π = arg min
π

T−1∑
t=0

c(xt, ut) s.t. ut = π(xt) and xt+1 = f(xt, ut). (1)

Model-based reinforcement learning (MBRL) attempts to solve the above in
situations where the underlying dynamics and sometimes the cost function are
unknown, adding the burden of deriving estimators of both. In this work, we
assume knowledge of the cost function and focus solely on system identification
in which we fit a function approximator f̂ to be used as the dynamics constraint
for the policy optimization in Eq. 1. System identification has been studied in the
traditional controls literature [11] and in the machine learning community [12,
13]. Some of these approaches [13, 14] can provide performance guarantees in the
infinite-data and model-realizable case (i.e. the true underlying model is linear),
while others [12, 8] optimize the the single-step predictive criterion

f̂ = arg min

T−1∑
t=1

‖xt − f̂(xt−1, ut−1)‖22 (2)

from a data-set of trajectories {(x0, u0) . . . , (xT−1, uT−1)} of state-action pairs
collected from the system. The downside of optimizing Eq. 2 is that errors can
compound (up to exponentially [15, 10]) when using f̂ to forward predict multiple
time-steps into the future. To solve this problem, we propose an extension to the
algorithm presented in [10] for learning multi-step predictive models for system
identification in the controlled setting and we experimentally verify that this
improves the efficiency of MBRL methods.
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Fig. 1. (Left) DAgger System Identification for Model Learning and Control. (Right)
DaD improves the multi-step prediction performance of learned dynamics models.

2.2 System Identification for Control

Simply collecting system trajectories, learning the dynamics, and optimizing the
control policy typically results in inaccurate or unstable dynamics models and
poorly performing control policies. An iterative process to achieve better perfor-
mance was formalized in the MBRL literature [16, 17], generating a procedure
similar to the one outlined in Fig. 1 (left). By alternating between fitting the
dynamics model and collecting new data under the distribution induced by the
policy, the model becomes better at capturing the dynamics over the important
regions of the state-space while the control policy derived from the dynamics is
either improved over that region or erroneously exploits inaccuracies in the dy-
namics model. Thus in each iteration, a good policy is found or data is collected
from the controller’s mistakes for improvement at the next iteration.

We specifically refer to the left loop in Fig. 1 as the DAgger (Data-set Aggre-
gation) system identification learning framework [18]. A key difference lies in the
aggregation step of the procedure in order to provide model agnostic guarantees.
At the beginning of the algorithm, DAgger initializes an empty training data-set
and an exploration policy πexplore(xt) that generates an action (control) ut given
a state xt. This initial policy can either consist of random controls (referred to
as a random policy) or be an expert demonstration. Then, DAgger iteratively
proceeds by: (1) executing the latest policy to collect a set of new trajectories
{ξi}k−1i=0 where ξi = {(xt, ut)...}i is a time series of state-action pairs; (2) aggre-
gating the trajectories {ξi}k−1i=0 into the training data-set; (3) learning from the

data-set a forward dynamics model f̂(xt, ut)→ xt+1; (4) optimizing a new con-
trol policy π that minimizes a given cost function c(xt, ut) over the time horizon
T of the control problem; (5) tracking the best policy from all those generated.

During the execution of the first DAgger loop, the state distribution induced
by π can greatly differ from the initial πexplore; the first generated policies may

perform poorly due to inaccuracies in f̂ . The iterative procedure refines the
dynamics model by aggregating data from states induced by running the system
with π1, . . . , πN . In particular, Ross et al. [18] provide theoretical guarantees for
this algorithm, as long as we also sample states from the exploration distribution
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when aggregating data. This can be simply obtained by aggregating additionally
a constant percentage of trajectories obtained from the exploration distribution.
For example, this can be obtained by sampling from the original dataset or
running the system with πexplore. This helps prevent the learner from focusing
only on the induced distributions from the policies. Finally, the algorithm does
not guarantee that the policy gets monotonically better with every iteration.
Thus, we must track the performance of the executed policies and return the
best one obtained so far.

2.3 Improving the multi-step predictive performance

Despite the use of iterative procedures, MBRL methods can suffer from com-
pounding errors during the policy optimization phase, either during the forward
planning with the model or in the back-propagation of the model gradients [19].
The cascading error is due to sequential predictions performed with the learned
model. By performing sequential predictions, the model is recursively applied
and its previous output is fed as its new input

x̂t+1 = f̂(x̂t, ut). (3)

This can result in a significant deviation from the true system. Ideally, we would
address this by learning a dynamics model that is optimized for the multiple-step
predictive performance (e.g. lagged-error criterion [20])

f̂ = arg min

T−1∑
t=1

T−1∑
j=t

‖xj − x̂j|t‖22, (4)

where x̂j|t is computed by applying Eq. 3 for j − t times to get the roll-out
prediction x̂j|t starting from xt. However, Eq. 4 is difficult to optimize. It is
non-convex in the model parameters of our learner f and also differs from stan-
dard supervised learning loss functions. For these reasons, much of the dynamics
learning literature focuses on optimization of the single-step loss (Eq. 2) utiliz-
ing existing supervised learning procedures such as Gaussian Process [8], Kernel
Regression [9], and Support-Vector regression [21].

In order to achieve good multi-step predictive performance while using su-
pervised learning methods, we recently introduced Data As Demonstrator
(DaD) [10]. DaD is a meta-algorithm that augments the traditional dynamics
learning method with an additional iterative procedure. The canonical dynamics
learning method uses a learning procedure to find a model f̂0 that minimizes
the single-step predictive performance. Conversely, to minimize the cascading
error, DaD specifically targets the distribution induced from sequential appli-
cation of the model. To this end, the algorithm performs “roll-outs” with the
learned model (in gray, top-left of the DaD-loop, Fig. 1) along trajectories from
the training data (shown in red, top-right of the DaD-loop, Fig. 1). Then, DaD
generates synthetic data by creating new input-target pairs and pointing each
prediction to the correct time-indexed state along the training trajectory1.

1 Trajectories can be sub-sampled shorter than the control problem’s time horizon.
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Algorithm 1 Data As Demonstrator (DaD) for Control

Input:
B Number of iterations N , set {ξk} of K trajectories of time lengths {Tk}.
B Learning procedure Learn

Output: Model f̂
1: Initialize data-set D ← {([xt, ut], xt+1)} of (Tk − 1) input-target pairs from each

trajectory ξk
2: for n = 1, . . . , N do
3: f̂n ← Learn(D)
4: for k = 1, . . . ,K do
5: Extract x0 ← ξk(0), {ut}Tk

t=0 ← ξk
6: (x̂1, . . . , x̂T )← roll-out(f̂n, x0, {ut}Tk

t=0)
7: D′ ← {([x̂1, u1], x2), . . . , ([x̂Tk−1, uTk−1], xTk )} where xt ← ξk(t)
8: D ← D ∪D′
9: end for

10: end for
11: return f̂n with lowest error on validation trajectories

While we refer the reader to [10] for theoretical details, DaD (as presented
in [10]) only handles uncontrolled dynamics. Here we introduce an extension to
this algorithm to enable it to handle controlled systems to be used in the MBRL
setting, as shown on the right side of Fig. 1. As detailed in Alg. 1, we learn
a forward dynamics by optimizing a supervised learning loss to predict targets
xt+1 from “features” [xt, ut]. Also in this case, we rely on a data aggregation
procedure on the training data-set. When executing the roll-out of the model
(line 6, Alg. 1), we start at the state x0 taken from the first timestep of the
trajectory ξk and forward simulate by performing recursive updates (Eq. 3) with

the learned model f̂n and the true sequence of controls {ut} from ξk. Then, when
augmenting the data-set, we utilize the original control and the estimated state
to create an input-target pair ([x̂t, ut], xt+1), (line 7, Alg. 1). Here, differently
from the procedure in [15], during the DaD step we do not separate the state
transition dynamics from the controls but do a joint optimization of the model.

Intuitively, our algorithm (detailed in Algorithm 1) aims to give the learner
synthetic recovery examples to compensate for the compounding error. In prac-
tice, as we want to upper-bound the loss for the learner (i.e. make the learning

problem easier for finding f̂n+1), we discard examples during the aggregation
step if the error was too high (significantly higher than the trajectory’s magni-
tude). In the next section, we experimentally verify that this extension allows
us to find better control policies with less data than the traditional approach.

3 Experimental Evaluation

We evaluate our algorithm (‘DAgger +DaD’) both on simulated dynamical sys-
tems2 and real robotic platforms. In particular, we consider two simulated sce-

2 Simulators, except the helicopter, available at https://github.com/webrot9/

control_simulators with C++ and Python APIs
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narios: the classic cartpole swing-up problem and the challenging helicopter hov-
ering problem. Additionally, we show the applicability of our approach on real
systems such as the Videre Erratic mobile base and the Baxter robot. In each
described experiment, we learn dynamical models of the form:

∆t ← f(xt, ut), where ∆t = xt+1 − xt. (5)

This parametrization is similar to [17], where the previous state is used as the
mean prior for predicting the next state. Due to the difficulty of optimizing Eq. 1
under arbitrary dynamics and cost models, for simplicity, we focus on minimizing
a sum-of-quadratics cost-to-go function:∑

t

c(xt, ut) =
∑
t

xTt Qtxt + uTt Rtut. (6)

By using this form of cost function, along with a linearization of the learned dy-
namics model, we can formulate the policy synthesis problem as that of a Linear
Quadratic Regulator, which allows the policy to be computed in closed-form. In
each experiment, we compare ‘DaD +DAgger’ to ‘DAgger Only’. For Cartpole,
Erratic, and Baxter the data-set was initialized with a random exploratory pol-
icy, while the helicopter problem received both a random and an expert policy
(generated form LQR on the true dynamics) roll-out for initialization. The sim-
ulated cartpole and helicopter experiments got additional exploratory roll-outs
on every iteration of DAgger with the random and expert policies respectively.
For the Baxter robot experiment, instead, we achieved exploration through an
ε-random controller that added random perturbation to the commanded control
with ε probability. For each method, we report the average cumulative cost at
each iteration of DAgger as averaged over ran trials. Three trials were run on
the Erratic while five were ran for other benchmarks. The charts that illustrate
the obtained results are all normalized to the highest observed cost, since the
cost functions are tuned to promote the desired control behavior rather than to
have a physical interpretation.

3.1 Simulation Experiments

Cartpole swing-up: The cartpole swing-up is a classic controls and MBRL
benchmark where the goal is to swing-up a pendulum by only applying a linear
force on the translatable base. We learn a linear dynamics model in the form
of Eq. 5 using Ridge Regression (regularized linear regression). We then use
an iterative Linear Quadratic Regulator [22] (iLQR) controller about a nominal
swing-up trajectory in state-space with an initial control trajectory of zeros. The
iLQR optimization procedure finds a sequence of states and controls feasible un-
der the learned dynamics model to minimize the cost. The simulated system has
system-transition noise and we compare our algorithim’s performance both with
and without control noise to simulate the effects of noisy actuation on a real-
robot. We show results in Fig. 2 of the evaluated trajectory costs accumulated
over the problem’s time horizon.
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Fig. 2. Controlling a simulated cartpole for swing-up behavior.
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Fig. 3. Controlling a simulated helicopter to hover. Note the log-scale on cost.

Helicopter simulator: Helicopter hovering is a difficult problem due to the
instability of the dynamical system, especially under noise. We utilize the heli-
copter simulator from [16] with additive white noise and follow a problem setup
similar to [18]. We make the problem more difficult by initializing the helicopter
at states up to 10 meters away from the nominal hover configuration. As the
dynamics are highly nonlinear, we show the advantage of using Random Fourier
Features (RFF) regression [23] to learn a dynamics model in a 21-dimensional
state space. We find a steady-state linear quadratic regulator (LQR) policy to
map the helicopter’s state to the 4-D control input. The results in Fig. 3 show
that DaD dramatically improves performance over only DAgger.

3.2 Real-Robot Experiments

Videre Erratic: In this experiment, we control the velocity of a Videre Er-
ratic mobile base. The goal is to drive the robot to a given position specified
in the robot’s reference frame. The 3-D state vector includes the robot position
and orientation while the 2-D control vector is the robot velocity. The dynam-
ics model is learned using Ridge Regression. Unlike the other experiments, we
use a trajectory-control policy that finds a sequence of controls u1, . . . , uT to
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Fig. 4. Results for controlling a Videre Erratic differential-drive mobile robot.

Fig. 5. Results on controlling a Baxter robot. We learn a dynamics model and compute
a control policy to move the robot manipulator from state x0 to xT .

apply open-loop at run time on the robot. We compute the control sequence by
simulating the learned dynamics model f̂ with a simple proportional controller.
Results are shown in Fig. 4.

Baxter robot: We use the ’DAgger +DaD’ approach to control a 7-degree-
of-freedom manipulator to a target joint configuration. We command the robot
arm in torque control mode with suppression of the inbuilt gravity compen-
sation. The 14-dimensional state vector consists of the joint angles and their
velocities. We learn the dynamics model using Ridge Regression and compute a
steady-state LQR control policy, obtaining the results in Fig. 5.

4 Discussion

In our simulation experiments we compared the performance obtained by apply-
ing ‘DAgger +DaD’ on a cartpole with and without control noise. Results show
that the improvement of our method over ‘DAgger Only’ decreases in presence of
actuation noise. This can be explained by the fact that, over the same generated
nominal controls, the state trajectories obtained during each roll-out are slightly
different and represent a limitation on the efficacy of the learner over the same
number of iterations – i.e. there is a higher baseline error in the dynamics model.

In the case of the helicopter, we additionally compared the results obtained
by using two different learning algorithms and by applying different exploration
policies. For the former, we compared the non-linear RFF [23] regression against
linear regression. As shown in Fig. 3(b), the nonlinear learner performs much
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Fig. 6. Comparison of Exploration policies. Cost values are not normalized across plots.

better as it better captures the heavy nonlinearity of the helicopter dynamics.
The DAgger method [18] requires drawing state-transition samples at every it-
eration from some exploration distribution. In Fig. 6(a), we compare using an
expert exploration policy (LQR controller using the true dynamics) versus a
random-control exploration policy. With DAgger +DaD, the learned dynamics
and policy yield a stable behavior for both types of exploration, with some im-
provement using the expert policy. The DAgger Only baseline often is unable
to learn a stable policy using the random exploration policy. We believe that
DAgger +DaD learns a more stable multi-step predictive dynamics model – an
important aspect for the Bellman backup during policy optimization. An inter-
esting observation is that DAgger +DaD without the exploration policy does not
lead to a significant performance difference (Fig. 6(b)) compared to the ‘DAgger
Only’ baselines. This comparison shows the difference between [20] (no explo-
ration) and [18] (constant fraction exploration). Note that to keep the amount
of data constant in the trials without the exploration trajectories, the learners
were given the difference as test trials under the current optimized policy.

The real-robot evaluations show the applicability of our method on real sys-
tems and complex platforms. In particular, the Erratic experiments show that
by using DaD, we are indeed able to get a better dynamics model for forward-
prediction. This model can be used for trajectory generation and optimization
as described in Section 3.2, where the sequence of obtained controls has been
directly applied to the Erratic in an open-loop as a control trajectory. While
the application of ‘DAgger +DaD’ on the Baxter robot results in a limited per-
formance improvement, this confirms our hypothesis that, in robotic platforms
characterized by high actuation noise (e.g. Baxter’s chain of noisy actuators),
only smaller improvements over ‘DAgger Only’ can be achieved (consistent with
the simulated noisy-actuation result in Fig. 2(b)). Additionally, the considered
problem on the Baxter is relatively simple with control authority at every joint.
In these settings, DAgger seemingly can still efficiently capture the dynamics of
the system with only a minor benefit from the additional DaD loop.
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