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ABSTRACT

Companies spend hundreds of billions in
software maintenance every year. Managing and
resolving bugs efficiently can reduce the cost of
software maintenance. One of the key steps in the
bug resolution process involves grouping bugs
into different categories. However, this is done
manually by assigning labels to each bug.
Therefore, our goal is to automate this step by
using machine-learning techniques to predict
labels assigned to bugs, from a given set of
predefined labels. Our dataset contains a set of
bug reports (or issues) from the BootStrap project
on Github. Our analysis showed that different
classifiers performed better on different subsets
of features. This suggested that we use Stacking.
Therefore, our final model included two Naive
Bayes classifiers and one SMO classifier
combined using Stacking with a JRip meta
classifier. The performance of our final model
was estimated with 2500 instances using a 10-
fold cross validation to have an accuracy of 92%
and a kappa of 0.85, which was about 15% higher
in accuracy and 44% higher in kappa than the
baseline performance. The results on our final test
data, which consists 1000 instances were
comparable with an accuracy of 85% and a kappa
of 0.70.

1. INTRODUCTION

Bugs in software are inevitable. Bugs are
expensive too, costing companies billions of
dollars each year. Therefore, being able to
accurately detect bugs and effectively resolve
them can significantly reduce the cost of software
development. There has been a growing interest
in applying machine learning techniques to
identify and resolve bugs.

Software defect prediction is the problem
of identifying whether a piece of software (or
parts of it) is buggy or not. There has not been a
significant success in using machine learning
techniques in  addressing this  problem.
Challagulla et. al [5] performed an empirical
assessment of several machine learning
techniques and found that the maximum accuracy
they could achieve was about 51.56%. On the
other hand, machine-learning techniques have
been successfully applied to facilitate the process
of resolving a software bug. This process
involves the several stages that a defect goes
through before it is resolved or fixed. This paper
aims to facilitate one stage of this defect
resolution process using machine-learning.

A software defect is often represented in
the form of a bug report. Almost all bug reports
contain a description of the, who reported and
when. One of the stages of bug resolution process
is assigning the bug to an appropriate developer.
This is a challenging problem and popularly
known as bug triaging. Several approaches have
been proposed in the literature, some of these
include a supervised Bayesian learning based text
categorization [8], using a latent semantic
indexing method with a support vector machine
[1], and using an SVM with a combination of text
and other features with a set of classifiers [4].

Assigning one or more labels to categorize
bugs is one of the ways in which the process of
bug allocation can be facilitated. Some of these
categories include, the severity of the bug,
modules that might need change, technical
knowledge and effort required. However, this is
also an equally challenging problem. The
simplest form of this problem is to classify
whether a given bug report is actually a defect in
the software that requires corrective maintenance



or requires other kinds of activities such as
adding a new feature, change documentation, or
an invalid use case. In this regard, an accuracy of
between 77% and 82% was achieved with simple
decision trees, naive Bayes classifiers and logistic
regression for several open source software
projects — Mozilla, Eclipse and JBoss [3].

Another form of bug classification is
determining the severity of the bug. This is
extremely useful in bug triaging as it helps in
both prioritizing and allocating the bug. An array
of machine-learning techniques was used to
predict severity of bugs from NASA’s PITS
projects, with a maximum prediction accuracy of
about 96.7% [6]. They also showed that the type
of classification algorithm depends on the project.

Github' is a popular platform for hosting
and managing open source software projects.
Github provides a bug-tracking tool, which each
project can use to create and manage bug reports.
These bug reports are technically called ‘Issues’.
The tool allows users to assign one or more
custom labels to each issue. These labels are
useful in prioritizing and categorizing issues.
However, assigning these labels requires
considerable manual effort. Therefore, the goal of
my project is to facilitate this process by using
machine learning techniques to predict the set of
labels that can be assigned to an issue.

The rest of the paper is organized as
follows. Section 2 explains the goals and problem
statement. Section 3 gives a literature review of
the current state of art papers relevant to this
problem. Section 4 talks about the dataset used
for the project and techniques for data collection.
Section 5 explains on how we came up with our
features. Section 6 gives a high level approach of
our model. Section 7 shows our initial baseline
performance and our approach to improve it.
Section 8 and 9 provide details on error analysis
and optimizing the individual models used in
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Stacking. The implementation and evaluation of
the final model is presented in Section 10. Section
11 shows the results from evaluating the final
model on our final test data. Section 12 concludes
with scope for future work.

2. PROBLEM STATEMENT

Given a set of issues (bug reports) of a project on
Github and a set of predefined labels, the goal is
to assign one or more labels to an issue. It is fair
to assume that the labels are independent and
therefore, the problem reduces to a binary
classifier for each label. In other words, the goal
is to predict whether a given label can be assigned
(TRUE) or not (FALSE) to a given issue.
Repeating this prediction for all labels, will give
us a set of labels that can be applied to an issue.
However, each label could require a different
model for prediction. Therefore, for a deeper
analysis of particular technique, we restrict the
scope of this paper to the prediction of only one
such label for one of the projects on Github.

3. RELATED WORK

It is important to review literature that
addresses both bug identification and bug
resolution, since they share the same domain and
to a large extent, operate on the same data.

Identifying whether a given code is buggy
or not is a challenging problem. An automated
analysis not only involves looking at the source
code but also other factors such as who modified
it, how many times was it modified, and so on
[9]. An empirical assessment of several machine-
learning based approaches on bug identification
showed that a maximum accuracy achievable was
not more than 51.56% [5].

On the other hand, there has been
reasonable success in categorizing bugs. Most of
the approaches in prior literature have used text
based categorization [6] [3]. A simplest form of
categorization is to determine if a given bug



requires just corrective maintenance or could
require adding a new feature [3]. A common form
of bug categorization is assigning a severity label
to a bug [6]. These are typically a set of five
ordered labels, where the lowest number would
indicate least severe and highest indicates most
severe bug.

Our problem is different from previous bug
categorization problems in two ways. First, the
set of categories or labels is unrestricted since it
can be any user-defined text. In other words, each
label has a meaning that is defined by the user
and two or more labels may or may not be
related. Second, we are using data from a social
coding platform called Github that no prior work
on this problem has used. Since Github allows
users to collaborate in interesting ways, our
approach to design new features is also a novel
contribution to this problem.

4. DATASET

I used a subset of issues from a well known
project on Github called “BootStrap™. The
project has over ten thousand issues and about
thousand contributors. As of December 2014 the
project has over ten thousand issues and about a
thousand contributors. It uses a set of 12 user-
defined labels to categorize issues. For example, a
label called “CSS” is used to tag an issue to mark
it as an issue related to the CSS technology used
in web development. Another example is a label
called “docs”, which could indicate that the issue
might need a change in the project
documentation. These labels help users to quickly
browse issues of relevance to them.

For this paper, I chose the do a binary
classification to predict whether a given issue has
the CSS label or not. Therefore, the class variable
is a nominal variable with values TRUE or
FALSE. I chose a random subset of 3900 labeled
issues from the Bootstrap project such that fifty
percent of these issues had the CSS label. Hence,
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the class value is TRUE in fifty percent of
instances and FALSE in the other fifty percent.
Ideally, I should have chosen the distribution of
class values that reflects the real data. However,
since multiple labels can be assigned to a single
issue, using the distribution of a class label in a
given project is highly unreliable. Therefore, I
chose a uniform distribution of the class values in
my dataset. I divided my dataset for development,
model building and testing as shown following
table.

TABLE 1
Dataset #Instances
Complete Data 3900
Development Data 400
Cross Validation Data | 2500
Final Test Data 1000

5. FEATURE SPACE DESIGN

Since this is not a readily available dataset, I
designed a set of features based on our domain
knowledge and improved them iteratively. I used
the Github API to extract the identified set of
issues in the Bootstrap project. The source code
used to mine data is available online”.

Each issue has a title and a body
(description of the bug). It was obvious to use
them as the set of text features. The issues also
have other attributes (meta-data or column) such
as who created it, and the creation time. Since I
only considered closed (or resolved) issues in my
dataset, I could also use the closing time and the
number of comments in each issue as my
features. Table 2 lists the first iteration of column
features in my dataset.
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TABLE 2
Meta Data Feature Type
Created By Nominal
Creation Time Both
#Comments Numeric
Closing Time Both
Time taken to close in | Numeric
hours

Throughout this paper I will refer to the
meta-data features as column features. The
feature ‘Created By’ is the username of the user
who reported the issue. This feature had 1881
unique values out of 2500 instances in the cross
validation data. Clearly, this feature will have a
poor predictive power. Therefore, we decided to
extract certain characteristics about each user.
Table 3 shows the features extracted for each
user.

TABLE 3: Extracted Features of “Created By”

Feature Type
#Followers Numeric
#Following this user | Numeric
#Repositories Starred | Numeric
#Repositories Numeric
Watched

#Repositories Owned | Numeric
Programming Both
Language of
repositories watched

or starred

Programming Both
Language of
repositories owned or
contributed to.

Each user has a set of repositories that
they own, watch or star. The programming

languages that a user knows or is interested in can
be obtained by identifying the programming
language of each such repository. There were a
total of about 75 unique programming languages
in all repositories. These features were named
with a prefix Repo_ or Watch followed by the
programing language to indicate whether they
owned the repository or watched / starred the
repository respectively. Further, these can be
treated as nominal (whether atleast one repository
had the programming language or not) or numeric
(the actual number of repositories).

The creation time contained the date,
month, year and time when an issue was created.
They were spread between years 2011 to 2014.
Looking closely at the development data, there
was some correlation between the month and
class value. So we decided to only use the
‘month’ of the creation time and closing time.
Also the time taken to resolve an issue looked
promising. Hence, we added the difference
between the closing time and creation time in
hours as another feature. This process resulted in
about 129 column features.

6. HIGH LEVEL APPROACH

In this section, we will summarize our final
model. The subsequent sections will talk about
how the model was iterated using error analysis.

We found that a naive bayes classifier
performed better than an SMO when only text
features were used. On the other hand, an SMO
performed better than naive Bayes when only
column features were used. When the entire set of
features was used, SMO showed a slight increase
in performance, however, NB showed a
significant decrease in performance. We found
that NB with text features gave the best
performance among the above six models. So, on
one hand, we only want to use NB with text
features, while on other hand we also want to
leverage the predictive power of column features.
Therefore, this suggested that we use NB with
text features and SMO with both text and column
features, and combine both models using



Stacking with JRip as a meta classifier. We found
that model built using the stacked classifier
performed significantly better than any of the
above four models individually.

7. BASELINE PERFORMANCE

Prior literature suggests that both weight
based and probabilistic models are reasonable
choices for the problem of bug categorization.
Therefore, we used an SMO and a Naive Bayes
(NB) classifier over the entire set of features on
the cross validation data, and performance values
are shown in Table 4.

TABLE 4: Performance on entire set of features

Classifier Accuracy Kappa
NB 0.79 0.56
SMO 0.80 0.59

Further, previous approaches in the literature
showed that NB performed significantly better in
text based categorization of bugs. Therefore, we
ran both NB and SMO selecting only text features
(unigrams) and then with only the column
features. The performance values are shown in
TABLE 5.

TABLE 5:
Classifier | Features | Accuracy | Kappa
NB Text 0.84 0.68
NB Column 0.58 0.1
SMO Text 0.79 0.57
SMO Column 0.62 0.18

Let us consider SMO on the entire set of
features as our baseline model, we have a
baseline performance of — accuracy: 0.80 and
kappa: 0.59. From Tables 4 and 5, we see that
NB with text features outperforms the baseline
performance. Since we want to use the better
performing NB classifier with text features and

the predictive power of column features, we
combine both these models using stacking. The
assumption is that the final model will perform
significantly better than either of the models.

Therefore, our goal is to optimize the
following two models before combining them
with stacking.

1. NB with text features

2. SMO with text and column features

8. OPTIMIZE NB WITH TEXT FEATURES

We used Light Side to do our error
analysis. Using an NB classifier with unigram
text features on our development resulted in 47
false positives and 33 false negatives. We first
looked at features with highest horizontal
difference in the misclassified cells of the
confusion matrix. We found that the word ‘click’
is often used when there is an issue with the user
interface. We also noticed that ‘click’ was used
interchangeably with clicking, clicked, clicks and
clickable in the same context. Therefore we
decided combine these terms with a regular
expression — cilck|click(s|ed|ing|able).

Looking at some of the misclassified instances we
found that a few of them used the phrase
‘vertically aligned’ to refer to some issue with the
alignment on the user interface. This suggested
we create a bi-gram feature with the same phrase.

We found that the modified feature space gave a
performance of accuracy: 0.84, kappa: 0.67,
which is slightly lower than the performance of
the unmodified feature space. Therefore, we
decided not to use the features identified during
our error analysis

9. OPTIMIZE SMO WITH BOTH TEXT AND
COLUMN FEATURES

Since we already looked at improving the text
features in our model with NB classifier, we



wanted to understand how the column features
behaved in our model. I extracted all the column
features in my dataset and used Weka’s
AttributeSelectedClassifier with a ChiSquare
evaluator and a Ranker. The purpose of doing this
was to identify the features with high predictive
power. The usual approach would be to build a
model with a subset of features that have a high
predictiveness score and compare its performance
with baseline. I found that selecting any subset of
features never gave better performance than
selecting all features in my SMO based model.
Also, I realized that narrowing down on features
based on the ranking might over-fit the model to
the training data.

However, looking at the ranked features
gave me a useful insight. I found that some
features that were ranked higher by the feature
selector had very low weights in the SMO
classifier. This indicates that these features had a
good correlation with the class value but for some
reason the SMO assigned low weights to these
features. I thought these features could be good
candidates to do error analysis. This approach
when combined with the approach of looking at
horizontal (or vertical) differences is more
powerful.

I found that the highest ranked feature -
“number of hours to close” had a very skewed
distribution. This suggested that I do a log
transformation of the values. To avoid undefined
values with logarithm of zero, I added one to each
value before doing the log transformation. I built
an SMO classifier after adding the newly added
feature to my entire feature set (both text and
column) and got a slightly lower than baseline
performance of accuracy: 0.79 and kappa: 0.59.
However, when the newly added feature was used
with only the column features, I got a statistically
significant improvement in accuracy: 0.63 kappa:
0.21. Since my final SMO model will use both
text and column features, I decided not to use this
feature in my final model.

I found that a number of programming
language related features (explained in Section 5)
had a high rank but had low weight in the SMO

classifier. After looking closely into the feature
values in the development data, it appeared that
almost all such features were sparse. In other
words, the features had more than fifty percent of
instances with zero values. This suggested that a
boolean transformation will be appropriate. There
were 120 programming related features and so, I
realized that doing the boolean transformation to
only a subset of these features might over fit the
model. Therefore, I converted all of these features
to boolean values, and the got a lower than
baseline performance of accuracy: 0.77 and

kappa: 0.54 using an SMO classifier.
Interestingly, the NB classifier gave a higher than
baseline performance with this boolean

transformation, accuracy: 0.83 and kappa: 0.65.
Using the experimenter we found that this was
statistically ~ significant than the baseline
performance. Although it is surprising that the
boolean transformation significantly increased the
performance of NB, a possible explanation is that
because the transformation made the feature
values normally distributed for each class value.

Prior literature [2] in bug categorization
has showed that subset of features can be selected
based on certain semantic similarities. Using this
idea, I was able to identify two groups of features
from among the set of column features in my
dataset. The first is the content specific features.
These features are the attributes related to content
in the issue, such as creation time, closing time
and the number of hours to close. The second set
of features is the user specific features. These are
the attributes related to the user who created the
issue, such as the number of followers the user
has, number of repositories contributed, the
programming languages the user knows, etc. The
performance on the first set of features was —
accuracy: 0.59, kappa: 0.15 and second set of
features was — accuracy: 0.6, kappa: 0.15. This
showed that both the sets of features had almost
similar predictive power, but neither is better than
the performance of the combined set of features.

The error analysis techniques so far allow
us to identify features that we might want to
tweak or add. However, having identified a



feature, a more formal approach to do error
analysis on meta-data attributes (column features)
is to compare the distribution of feature values
between misclassified instances and correctly
classified instances. Unfortunately, I could not
find a tool that readily does this. LightSide only
shows the values of text features. However,
Lightside allows us to export a set of instances,
either correctly classified or misclassified.
Although this only gives the IDs of the instances,
one could use a script to extract the
corresponding instances from these IDs.

Also looking at low ranked but with high
weight features might also be interesting.
Although this is not a common scenario,
however, if it does occur these could be features
that might have been over-fitted to the model. So
we have to be careful if such a scenario occurs.
However, this was not observed in this dataset.

I tuned my SMO classifier with ¢ = 2.0
and ¢ = 3.0, to account for any non-linear
relations. I found that when the SMO classifier is
used with only the column features, there is an
increase in performance with ¢ = 2.0, however,
when both text and column features are used,
there is no increase in performance compared to
the baseline. Therefore, I decided to use the
baseline SMO classifier setting with ¢ = 1.0 to
build my final model.

From all the above error analysis, we
found that the NB classifier with all features and
a boolean transformation of the programming
language specific features performed best.
Therefore we decide to use this to include as one
of our stacked classifiers.

10. FINAL MODEL - STACKING

When we evaluated our baseline performance we
found that NB performs best with text features
whereas SMO performs best with column
features. The analysis in Section 7 showed that
combining an NB classifier with text features and
an SMO classifier on the entire feature set. In our
error analysis we found that an NB Classifier

with the entire feature set gave a significantly
higher performance when a subset of features
were transformed from count to boolean values.
So we decided to include that model in our
stacked classifier.

Therefore, to summarize the stacked
classifier contains the following three models,

1. NB classifier with only unigram text
features.

2. SMO classifier with the entire set of
features.

3. NB classifier with the entire set of
features but a subset of features
transformed to boolean values. This
subset is the set of programming
language features.

The reason to include the SMO classifier in
stacking was because prior literature [7] shows
that combining a weight based and probabilistic
model in stacking is an effective approach.

The meta classifier used in Stacking is
JRip. I could have used any other meta-classifier
since almost all classifiers gave a similar
performance. However, a rule or a tree based
classifier is usually an appropriate meta classifier
in stacking.

10.1 MODIFYING
CLASSIFIER

WEKA’'S STACKING

One major limitation with Weka’s Stacking
classifier is that it requires all stacked classifier to
use the same set of features. Even the Weka Java
API only allows one set of instances for all the
stacked classifiers. Therefore, I created a new
Java class which extends the Stacking class in
Weka. In this new class, I modified the methods :
buildClassifier, generateMetalLevel and
metalnstance to work with an array of instance
sets instead of a single instance set. I also added
corresponding methods to perform cross



validation and to evaluate a test set. The source
code is available online®,

10.2 EVALUATING THE PERFORMANCE OF
THE FINAL MODEL

We could not use the Experimenter to compare
the performance of the final model with the
baseline. This is because we had to use a custom
Stacking classifier as shown above. Therefore we
used a statistical tool (R Studio) to compare the
performance of each fold of cross validation for
both models. The following table shows the
performance of models on each fold.

Fold | Accuracy | Accuracy | Kappa - | Kappa
-Baseline | -Final Baseline | -Final
1 0.8 0.93 0.59 0.86
2 0.82 0.94 0.63 0.87
3 0.8 0.91 0.6 0.82
4 0.8 0.93 0.59 0.86
5 0.79 0.9 0.58 0.81
6 0.84 0.93 0.67 0.87
7 0.76 0.94 0.52 0.88
8 0.8 0.91 0.61 0.82
9 0.79 0.91 0.58 0.82
10 0.77 0.94 0.53 0.87
Ave |0.80 0.92 0.59 0.85

A T-test to compare the final and baseline model
gave a p-value of 1*10™'° for accuracy and a p-
value of 8*107'" for kappa showing that the
performance gain is statistically significant for
both accuracy and kappa. The estimated
performance of the final model is accuracy: 0.92

* https://github.com/arunk054/machine-learning-
algos/tree/master/Extended Weka Classifiers/Sta
cking

and kappa: 0.85. The net increase in accuracy is
about 15% and kappa is about 44%.

11. RESULTS - FINAL TEST SET

Since my final model had a statistically
significant performance improvement over the
baseline, I decided to use the final model to
evaluate its performance on the unseen final test
data. My final test set had 1000 instances. The
performance on my final test set is accuracy:
0.85 and kappa: 0.70. The performance although
lower, is comparable to the performance of the
final model.

The source code to build, evaluate and test the
classifier, and the complete dataset used is
available online”.

12. CONCLUSION AND FUTURE WORK

We looked at the problem of bug categorization
in software. We showed novel approaches to
design and extract features for issues (bug
reports) from the Github platform. Our analysis
showed that Stacking multiple classifiers on
subset of features will give the optimal
performance. Our final model consisted two
Naive Bayes classifiers and one SMO classifier
with Stacking using a JRip meta classifier.

One major limitation of our work is that
we reduced the problem of multi-label
classification to a binary classifier. This is based
on the assumption that class labels are
independent and do not interact. However, this
may not always be true in all projects. Therefore,
extending our work to a multi-label classification
is useful. Applying our approach to other datasets
and other projects on Github is a reasonable next
step.

> https:/github.com/arunk054/machine-learning-
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