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ABSTRACT 

Companies spend hundreds of billions in 
software maintenance every year. Managing and 
resolving bugs efficiently can reduce the cost of 
software maintenance. One of the key steps in the 
bug resolution process involves grouping bugs 
into different categories. However, this is done 
manually by assigning labels to each bug. 
Therefore, our goal is to automate this step by 
using machine-learning techniques to predict 
labels assigned to bugs, from a given set of 
predefined labels. Our dataset contains a set of 
bug reports (or issues) from the BootStrap project 
on Github. Our analysis showed that different 
classifiers performed better on different subsets 
of features. This suggested that we use Stacking. 
Therefore, our final model included two Naïve 
Bayes classifiers and one SMO classifier 
combined using Stacking with a JRip meta 
classifier. The performance of our final model 
was estimated with 2500 instances using a 10-
fold cross validation to have an accuracy of 92% 
and a kappa of 0.85, which was about 15% higher 
in accuracy and 44% higher in kappa than the 
baseline performance. The results on our final test 
data, which consists 1000 instances were 
comparable with an accuracy of 85% and a kappa 
of 0.70. 

 
1. INTRODUCTION 
 
Bugs in software are inevitable. Bugs are 
expensive too, costing companies billions of 
dollars each year. Therefore, being able to 
accurately detect bugs and effectively resolve 
them can significantly reduce the cost of software 
development. There has been a growing interest 
in applying machine learning techniques to 
identify and resolve bugs. 

Software defect prediction is the problem 
of identifying whether a piece of software (or 
parts of it) is buggy or not. There has not been a 
significant success in using machine learning 
techniques in addressing this problem. 
Challagulla et. al [5] performed an empirical 
assessment of several machine learning 
techniques and found that the maximum accuracy 
they could achieve was about 51.56%. On the 
other hand, machine-learning techniques have 
been successfully applied to facilitate the process 
of resolving a software bug. This process 
involves the several stages that a defect goes 
through before it is resolved or fixed. This paper 
aims to facilitate one stage of this defect 
resolution process using machine-learning.  

A software defect is often represented in 
the form of a bug report. Almost all bug reports 
contain a description of the, who reported and 
when. One of the stages of bug resolution process 
is assigning the bug to an appropriate developer. 
This is a challenging problem and popularly 
known as bug triaging. Several approaches have 
been proposed in the literature, some of these 
include a supervised Bayesian learning based text 
categorization [8], using a latent semantic 
indexing method with a support vector machine 
[1], and using an SVM with a combination of text 
and other features with a set of classifiers [4].  

 Assigning one or more labels to categorize 
bugs is one of the ways in which the process of 
bug allocation can be facilitated. Some of these 
categories include, the severity of the bug, 
modules that might need change, technical 
knowledge and effort required. However, this is 
also an equally challenging problem. The 
simplest form of this problem is to classify 
whether a given bug report is actually a defect in 
the software that requires corrective maintenance 



 

or requires other kinds of activities such as 
adding a new feature, change documentation, or 
an invalid use case. In this regard, an accuracy of 
between 77% and 82% was achieved with simple 
decision trees, naïve Bayes classifiers and logistic 
regression for several open source software 
projects – Mozilla, Eclipse and JBoss [3]. 

Another form of bug classification is 
determining the severity of the bug. This is 
extremely useful in bug triaging as it helps in 
both prioritizing and allocating the bug. An array 
of machine-learning techniques was used to 
predict severity of bugs from NASA’s PITS 
projects, with a maximum prediction accuracy of 
about 96.7% [6]. They also showed that the type 
of classification algorithm depends on the project. 

Github1 is a popular platform for hosting 
and managing open source software projects. 
Github provides a bug-tracking tool, which each 
project can use to create and manage bug reports. 
These bug reports are technically called ‘Issues’. 
The tool allows users to assign one or more 
custom labels to each issue. These labels are 
useful in prioritizing and categorizing issues. 
However, assigning these labels requires 
considerable manual effort. Therefore, the goal of 
my project is to facilitate this process by using 
machine learning techniques to predict the set of 
labels that can be assigned to an issue.  

The rest of the paper is organized as 
follows. Section 2 explains the goals and problem 
statement. Section 3 gives a literature review of 
the current state of art papers relevant to this 
problem. Section 4 talks about the dataset used 
for the project and techniques for data collection. 
Section 5 explains on how we came up with our 
features. Section 6 gives a high level approach of 
our model. Section 7 shows our initial baseline 
performance and our approach to improve it. 
Section 8 and 9 provide details on error analysis 
and optimizing the individual models used in 

                                                
1 https://github.com/ 
2 https://github.com/twbs/bootstrap/ 
3 https://github.com/arunk054/machine-learning-
algos/tree/master/github-issue-labeling/data-

Stacking. The implementation and evaluation of 
the final model is presented in Section 10. Section 
11 shows the results from evaluating the final 
model on our final test data. Section 12 concludes 
with scope for future work. 

  

2. PROBLEM STATEMENT 
 

Given a set of issues (bug reports) of a project on 
Github and a set of predefined labels, the goal is 
to assign one or more labels to an issue. It is fair 
to assume that the labels are independent and 
therefore, the problem reduces to a binary 
classifier for each label. In other words, the goal 
is to predict whether a given label can be assigned 
(TRUE) or not (FALSE) to a given issue. 
Repeating this prediction for all labels, will give 
us a set of labels that can be applied to an issue. 
However, each label could require a different 
model for prediction. Therefore, for a deeper 
analysis of particular technique, we restrict the 
scope of this paper to the prediction of only one 
such label for one of the projects on Github. 

  

3. RELATED WORK 
 

It is important to review literature that 
addresses both bug identification and bug 
resolution, since they share the same domain and 
to a large extent, operate on the same data. 

Identifying whether a given code is buggy 
or not is a challenging problem. An automated 
analysis not only involves looking at the source 
code but also other factors such as who modified 
it, how many times was it modified, and so on 
[9]. An empirical assessment of several machine-
learning based approaches on bug identification 
showed that a maximum accuracy achievable was 
not more than 51.56% [5]. 

On the other hand, there has been 
reasonable success in categorizing bugs. Most of 
the approaches in prior literature have used text 
based categorization [6] [3]. A simplest form of 
categorization is to determine if a given bug 



 

requires just corrective maintenance or could 
require adding a new feature [3]. A common form 
of bug categorization is assigning a severity label 
to a bug [6]. These are typically a set of five 
ordered labels, where the lowest number would 
indicate least severe and highest indicates most 
severe bug.  

Our problem is different from previous bug 
categorization problems in two ways. First, the 
set of categories or labels is unrestricted since it 
can be any user-defined text. In other words, each 
label has a meaning that is defined by the user 
and two or more labels may or may not be 
related. Second, we are using data from a social 
coding platform called Github that no prior work 
on this problem has used. Since Github allows 
users to collaborate in interesting ways, our 
approach to design new features is also a novel 
contribution to this problem. 

 

4. DATASET 
 

I used a subset of issues from a well known 
project on Github called “BootStrap”2. The 
project has over ten thousand issues and about 
thousand contributors. As of December 2014 the 
project has over ten thousand issues and about a 
thousand contributors. It uses a set of 12 user-
defined labels to categorize issues. For example, a 
label called “CSS” is used to tag an issue to mark 
it as an issue related to the CSS technology used 
in web development. Another example is a label 
called “docs”, which could indicate that the issue 
might need a change in the project 
documentation. These labels help users to quickly 
browse issues of relevance to them. 

For this paper, I chose the do a binary 
classification to predict whether a given issue has 
the CSS label or not. Therefore, the class variable 
is a nominal variable with values TRUE or 
FALSE. I chose a random subset of 3900 labeled 
issues from the Bootstrap project such that fifty 
percent of these issues had the CSS label. Hence, 
                                                
2 https://github.com/twbs/bootstrap/ 

the class value is TRUE in fifty percent of 
instances and FALSE in the other fifty percent. 
Ideally, I should have chosen the distribution of 
class values that reflects the real data. However, 
since multiple labels can be assigned to a single 
issue, using the distribution of a class label in a 
given project is highly unreliable. Therefore, I 
chose a uniform distribution of the class values in 
my dataset. I divided my dataset for development, 
model building and testing as shown following 
table. 

TABLE 1 

Dataset #Instances 

Complete Data 3900 

Development Data 400 

Cross Validation Data 2500 

Final Test Data 1000 

 
 

5. FEATURE SPACE DESIGN 
 

Since this is not a readily available dataset, I 
designed a set of features based on our domain 
knowledge and improved them iteratively. I used 
the Github API to extract the identified set of 
issues in the Bootstrap project. The source code 
used to mine data is available online3. 

Each issue has a title and a body 
(description of the bug). It was obvious to use 
them as the set of text features. The issues also 
have other attributes (meta-data or column) such 
as who created it, and the creation time. Since I 
only considered closed (or resolved) issues in my 
dataset, I could also use the closing time and the 
number of comments in each issue as my 
features. Table 2 lists the first iteration of column 
features in my dataset. 

                                                
3 https://github.com/arunk054/machine-learning-
algos/tree/master/github-issue-labeling/data-
collection 



 

TABLE 2 

Meta Data Feature Type 

Created By Nominal 

Creation Time Both 

#Comments Numeric 

Closing Time Both 

Time taken to close in 
hours 

Numeric 

 
Throughout this paper I will refer to the 

meta-data features as column features. The 
feature ‘Created By’ is the username of the user 
who reported the issue. This feature had 1881 
unique values out of 2500 instances in the cross 
validation data. Clearly, this feature will have a 
poor predictive power. Therefore, we decided to 
extract certain characteristics about each user. 
Table 3 shows the features extracted for each 
user. 

TABLE 3: Extracted Features of  “Created By” 

Feature Type 

#Followers Numeric 

#Following  this user Numeric 

#Repositories Starred Numeric 

#Repositories 
Watched 

Numeric 

#Repositories Owned Numeric 

Programming 
Language of 
repositories watched 
or starred 

Both 

Programming 
Language of 
repositories owned or 
contributed to. 

Both 

 
Each user has a set of repositories that 

they own, watch or star. The programming 

languages that a user knows or is interested in can 
be obtained by identifying the programming 
language of each such repository. There were a 
total of about 75 unique programming languages 
in all repositories. These features were named 
with a prefix Repo_ or Watch_ followed by the 
programing language to indicate whether they 
owned the repository or watched / starred the 
repository respectively. Further, these can be 
treated as nominal (whether atleast one repository 
had the programming language or not) or numeric 
(the actual number of repositories). 

The creation time contained the date, 
month, year and time when an issue was created. 
They were spread between years 2011 to 2014. 
Looking closely at the development data, there 
was some correlation between the month and 
class value. So we decided to only use the 
‘month’ of the creation time and closing time. 
Also the time taken to resolve an issue looked 
promising. Hence, we added the difference 
between the closing time and creation time in 
hours as another feature. This process resulted in 
about 129 column features. 

 
6. HIGH LEVEL APPROACH 
 
In this section, we will summarize our final 
model. The subsequent sections will talk about 
how the model was iterated using error analysis. 

We found that a naive bayes classifier 
performed better than an SMO when only text 
features were used. On the other hand, an SMO 
performed better than naïve Bayes when only 
column features were used. When the entire set of 
features was used, SMO showed a slight increase 
in performance, however, NB showed a 
significant decrease in performance. We found 
that NB with text features gave the best 
performance among the above six models. So, on 
one hand, we only want to use NB with text 
features, while on other hand we also want to 
leverage the predictive power of column features. 
Therefore, this suggested that we use NB with 
text features and SMO with both text and column 
features, and combine both models using 



 

Stacking with JRip as a meta classifier. We found 
that model built using the stacked classifier 
performed significantly better than any of the 
above four models individually.  

 
7. BASELINE PERFORMANCE 

 
Prior literature suggests that both weight 

based and probabilistic models are reasonable 
choices for the problem of bug categorization. 
Therefore, we used an SMO and a Naïve Bayes 
(NB) classifier over the entire set of features on 
the cross validation data, and performance values 
are shown in Table 4. 

TABLE 4: Performance on entire set of features 

Classifier Accuracy Kappa 

NB 0.79 0.56 

SMO 0.80 0.59 

 

Further, previous approaches in the literature 
showed that NB performed significantly better in 
text based categorization of bugs. Therefore, we 
ran both NB and SMO selecting only text features 
(unigrams) and then with only the column 
features. The performance values are shown in 
TABLE 5. 

TABLE 5: 

Classifier Features Accuracy Kappa 

NB Text 0.84 0.68 

NB Column 0.58 0.1 

SMO Text 0.79 0.57 

SMO Column 0.62 0.18 

 
Let us consider SMO on the entire set of 

features as our baseline model, we have a 
baseline performance of – accuracy: 0.80 and 
kappa: 0.59. From Tables 4 and 5, we see that 
NB with text features outperforms the baseline 
performance. Since we want to use the better 
performing NB classifier with text features and 

the predictive power of column features, we 
combine both these models using stacking. The 
assumption is that the final model will perform 
significantly better than either of the models. 

Therefore, our goal is to optimize the 
following two models before combining them 
with stacking. 

1. NB with text features 

2. SMO with text and column features 
 

8. OPTIMIZE NB WITH TEXT FEATURES 
 
 We used Light Side to do our error 
analysis. Using an NB classifier with unigram 
text features on our development resulted in 47 
false positives and 33 false negatives. We first 
looked at features with highest horizontal 
difference in the misclassified cells of the 
confusion matrix. We found that the word ‘click’ 
is often used when there is an issue with the user 
interface.  We also noticed that ‘click’ was used 
interchangeably with clicking, clicked, clicks and 
clickable in the same context. Therefore we 
decided combine these terms with a regular 
expression  – cilck|click(s|ed|ing|able). 
 
Looking at some of the misclassified instances we 
found that a few of them used the phrase 
‘vertically aligned’ to refer to some issue with the 
alignment on the user interface. This suggested 
we create a bi-gram feature with the same phrase. 
 
We found that the modified feature space gave a 
performance of accuracy: 0.84, kappa: 0.67, 
which is slightly lower than the performance of 
the unmodified feature space. Therefore, we 
decided not to use the features identified during 
our error analysis 
 
9. OPTIMIZE SMO WITH BOTH TEXT AND 
COLUMN FEATURES 
 

Since we already looked at improving the text 
features in our model with NB classifier, we 



 

wanted to understand how the column features 
behaved in our model. I extracted all the column 
features in my dataset and used Weka’s 
AttributeSelectedClassifier with a ChiSquare 
evaluator and a Ranker. The purpose of doing this 
was to identify the features with high predictive 
power. The usual approach would be to build a 
model with a subset of features that have a high 
predictiveness score and compare its performance 
with baseline. I found that selecting any subset of 
features never gave better performance than 
selecting all features in my SMO based model. 
Also, I realized that narrowing down on features 
based on the ranking might over-fit the model to 
the training data. 

However, looking at the ranked features 
gave me a useful insight. I found that some 
features that were ranked higher by the feature 
selector had very low weights in the SMO 
classifier. This indicates that these features had a 
good correlation with the class value but for some 
reason the SMO assigned low weights to these 
features. I thought these features could be good 
candidates to do error analysis. This approach 
when combined with the approach of looking at 
horizontal (or vertical) differences is more 
powerful.  

I found that the highest ranked feature - 
“number of hours to close” had a very skewed 
distribution. This suggested that I do a log 
transformation of the values. To avoid undefined 
values with logarithm of zero, I added one to each 
value before doing the log transformation. I built 
an SMO classifier after adding the newly added 
feature to my entire feature set (both text and 
column) and got a slightly lower than baseline 
performance of accuracy: 0.79 and kappa: 0.59. 
However, when the newly added feature was used 
with only the column features, I got a statistically 
significant improvement in accuracy: 0.63 kappa: 
0.21. Since my final SMO model will use both 
text and column features, I decided not to use this 
feature in my final model. 

I found that a number of programming 
language related features (explained in Section 5) 
had a high rank but had low weight in the SMO 

classifier. After looking closely into the feature 
values in the development data, it appeared that 
almost all such features were sparse. In other 
words, the features had more than fifty percent of 
instances with zero values. This suggested that a 
boolean transformation will be appropriate. There 
were 120 programming related features and so, I 
realized that doing the boolean transformation to 
only a subset of these features might over fit the 
model. Therefore, I converted all of these features 
to boolean values, and the got a lower than 
baseline performance of accuracy: 0.77 and 
kappa: 0.54 using an SMO classifier. 
Interestingly, the NB classifier gave a higher than 
baseline performance with this boolean 
transformation, accuracy: 0.83 and kappa: 0.65. 
Using the experimenter we found that this was 
statistically significant than the baseline 
performance. Although it is surprising that the 
boolean transformation significantly increased the 
performance of NB, a possible explanation is that 
because the transformation made the feature 
values normally distributed for each class value. 

Prior literature [2] in bug categorization 
has showed that subset of features can be selected 
based on certain semantic similarities. Using this 
idea, I was able to identify two groups of features 
from among the set of column features in my 
dataset. The first is the content specific features. 
These features are the attributes related to content 
in the issue, such as creation time, closing time 
and the number of hours to close. The second set 
of features is the user specific features. These are 
the attributes related to the user who created the 
issue, such as the number of followers the user 
has, number of repositories contributed, the 
programming languages the user knows, etc. The 
performance on the first set of features was – 
accuracy: 0.59, kappa: 0.15 and second set of 
features was – accuracy: 0.6, kappa: 0.15. This 
showed that both the sets of features had almost 
similar predictive power, but neither is better than 
the performance of the combined set of features. 

The error analysis techniques so far allow 
us to identify features that we might want to 
tweak or add. However, having identified a 



 

feature, a more formal approach to do error 
analysis on meta-data attributes (column features) 
is to compare the distribution of feature values 
between misclassified instances and correctly 
classified instances. Unfortunately, I could not 
find a tool that readily does this. LightSide only 
shows the values of text features. However, 
Lightside allows us to export a set of instances, 
either correctly classified or misclassified. 
Although this only gives the IDs of the instances, 
one could use a script to extract the 
corresponding instances from these IDs. 

Also looking at low ranked but with high 
weight features might also be interesting. 
Although this is not a common scenario, 
however, if it does occur these could be features 
that might have been over-fitted to the model. So 
we have to be careful if such a scenario occurs. 
However, this was not observed in this dataset. 

I tuned my SMO classifier with c = 2.0 
and c = 3.0, to account for any non-linear 
relations. I found that when the SMO classifier is 
used with only the column features, there is an 
increase in performance with c = 2.0, however, 
when both text and column features are used, 
there is no increase in performance compared to 
the baseline. Therefore, I decided to use the 
baseline SMO classifier setting with c = 1.0 to 
build my final model. 

From all the above error analysis, we 
found that the NB classifier with all features and 
a boolean transformation of the programming 
language specific features performed best. 
Therefore we decide to use this to include as one 
of our stacked classifiers. 

 

10. FINAL MODEL – STACKING  
 
When we evaluated our baseline performance we 
found that NB performs best with text features 
whereas SMO performs best with column 
features. The analysis in Section 7 showed that 
combining an NB classifier with text features and 
an SMO classifier on the entire feature set. In our 
error analysis we found that an NB Classifier 

with the entire feature set gave a significantly 
higher performance when a subset of features 
were transformed from count to boolean values. 
So we decided to include that model in our 
stacked classifier.  
 Therefore, to summarize the stacked 
classifier contains the following three models, 

1. NB classifier with only unigram text 
features. 

2. SMO classifier with the entire set of 
features.  

3. NB classifier with the entire set of 
features but a subset of features 
transformed to boolean values. This 
subset is the set of programming 
language features. 

The reason to include the SMO classifier in 
stacking was because prior literature [7] shows 
that combining a weight based and probabilistic 
model in stacking is an effective approach. 

The meta classifier used in Stacking is 
JRip. I could have used any other meta-classifier 
since almost all classifiers gave a similar 
performance. However, a rule or a tree based 
classifier is usually an appropriate meta classifier 
in stacking. 

 
10.1 MODIFYING WEKA’S STACKING 
CLASSIFIER 
 
One major limitation with Weka’s Stacking 
classifier is that it requires all stacked classifier to 
use the same set of features. Even the Weka Java 
API only allows one set of instances for all the 
stacked classifiers. Therefore, I created a new 
Java class which extends the Stacking class in 
Weka. In this new class, I modified the methods : 
buildClassifier, generateMetaLevel and 
metaInstance to work with an array of instance 
sets instead of a single instance set. I also added 
corresponding methods to perform cross 



 

validation and to evaluate a test set. The source 
code is available online4. 
10.2 EVALUATING THE PERFORMANCE OF 
THE FINAL MODEL 
 
We could not use the Experimenter to compare 
the performance of the final model with the 
baseline. This is because we had to use a custom 
Stacking classifier as shown above. Therefore we 
used a statistical tool (R Studio) to compare the 
performance of each fold of cross validation for 
both models. The following table shows the 
performance of models on each fold. 

 

Fold Accuracy 
-Baseline 

Accuracy 
-Final 

Kappa - 
Baseline 

Kappa 
-Final 

1 0.8 0.93 0.59 0.86 

2 0.82 0.94 0.63 0.87 

3 0.8 0.91 0.6 0.82 

4 0.8 0.93 0.59 0.86 

5 0.79 0.9 0.58 0.81 

6 0.84 0.93 0.67 0.87 

7 0.76 0.94 0.52 0.88 

8 0.8 0.91 0.61 0.82 

9 0.79 0.91 0.58 0.82 

10 0.77 0.94 0.53 0.87 

Ave 0.80	
   0.92	
   0.59	
   0.85	
  

 
A T-test to compare the final and baseline model 
gave a p-value of 1*10-10 for accuracy and a p-
value of 8*10-11 for kappa showing that the 
performance gain is statistically significant for 
both accuracy and kappa. The estimated 
performance of the final model is accuracy: 0.92 

                                                
4 https://github.com/arunk054/machine-learning-
algos/tree/master/Extended_Weka_Classifiers/Sta
cking 

and kappa: 0.85. The net increase in accuracy is 
about 15% and kappa is about 44%. 

 
11. RESULTS - FINAL TEST SET 
 
Since my final model had a statistically 
significant performance improvement over the 
baseline, I decided to use the final model to 
evaluate its performance on the unseen final test 
data. My final test set had 1000 instances. The 
performance on my final test set is accuracy: 
0.85 and kappa: 0.70. The performance although 
lower, is comparable to the performance of the 
final model. 

The source code to build, evaluate and test the 
classifier, and the complete dataset used is 
available online5. 
 

12. CONCLUSION AND FUTURE WORK 
 

We looked at the problem of bug categorization 
in software. We showed novel approaches to 
design and extract features for issues (bug 
reports) from the Github platform. Our analysis 
showed that Stacking multiple classifiers on 
subset of features will give the optimal 
performance. Our final model consisted two 
Naïve Bayes classifiers and one SMO classifier 
with Stacking using a JRip meta classifier. 
 One major limitation of our work is that 
we reduced the problem of multi-label 
classification to a binary classifier. This is based 
on the assumption that class labels are 
independent and do not interact. However, this 
may not always be true in all projects. Therefore, 
extending our work to a multi-label classification 
is useful. Applying our approach to other datasets 
and other projects on Github is a reasonable next 
step. 
                                                
5 https://github.com/arunk054/machine-learning-
algos/tree/master/github-issue-labeling/building-
classifiers 
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