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Mechanism Design

‘Optimizing’ the allocation of resources.

Parameters (called type) needed to determine an optimal allocation are
privately held by agents who will consume the resources to be allocated.

Those parameters determine the utility an agent will enjoy from a
particular allocation.

Agents report of her type will influence the resulting allocation which in
turn will affect the agents utility.

How can planner simultaneously elicit the information that is privately held
and choose the optimal allocation?

Via allocation and monetary transfers.
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Examples

Many mechanism design problems are optimization problems.

Auctions

Matching (school choice, randomized rules)

Models of Persuasion

Team formation
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Today & Tomorrow

1 Use of polymatroids in mechanism design.

2 Use of shortest path problems to analyze rationalizability and
incentive compatibility.

3 Use of iterative rounding.
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Submodularity & Polymatroids

Let E = {1, 2, . . . , n} be a ground set. Real valued function g defined on

subsets of E is

non-decreasing if S ⊆ T ⇒ g(S) ≤ g(T ), and

g is submodular if ∀S ,T ⊂ E

g(S) + g(T ) ≥ g(S ∪ T ) + g(S ∩ T ).

Equivalent: Suppose S ⊂ T and j 6∈ T . Then,

g(T ∪ j)− g(T ) ≤ g(S ∪ j)− g(S)

Rakesh V. Vohra () LP&Mech August 2012 5 / 47



Examples of Submodular Functions

1 E a finite set of vectors in <m and g(S) is the rank of the subset S .

2 E a finite set of vectors in <m and g(S) is log volume of set S .

3 E set of columns of a non-negative determinant matrix and g(S) is
log of determinant of principal minor associated with S (also M
matrices).

4 E the edge set of a graph and g(S) size of largest acyclic subset of S .

5 E the vertex set of an edge capacitated network with a distinguished
source vertex and g(S) the maximum flow into S .

6 E the vertex set of a graph and g(S) the cardinality of the set of
neighbors of S .

7 E a set of events and −g(S) is the probability that all events in S are
realized.

8 Entropy of joint distribution.
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Polymatroid Optimization

Polymatroid:

P(g) = {x ∈ <n
+ :

∑
j∈S

xj ≤ g(S) ∀S ⊆ E}

max{cx : x ∈ P(g)}

c1 ≥ c2 . . . ≥ ck ≥ 0 > ck+1 . . . ≥ cn.

1 S0 = ∅
2 S j = {1, 2, . . . , j} for all j ∈ E .

3 xj = g(S j)− g(S j−1) for 1 ≤ j ≤ k

4 xj = 0 for j ≥ k + 1.
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So What?

For economic applications goal is not merely to solve the underlying
optimization problem but identify qualitative properties of optimal
solution and how it varies with changes in the parameters of the
problem.

Polymatroid optimizations problems are valuable because they admit
a simple greedy solution.

Reduction allows one to handle certain kinds of additional constraints
like budget and quota constraints.
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Allocation with Inspection

Inspired by Dekel, Lipman and Ben-Porath (2011).

Good to be allocated to agent with the highest value.

Transfers not permitted.

n risk neutral agents

Value each agent assigns to the good is called their type

Types are independent draws from T = {1, . . . ,m}
ft > 0 is probability that buyer is of type t

For a cost K , planner can verify an agents report of his type.
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Direct Mechanism

Planner announces three functions whose argument is the profile of types
reported.

Allocation rule: specifies what ‘fraction’ of the object goes to each agent
as a function of profile of reported types.

Payment rule: specifies payment of each agent as a function of profile of
reported types.

Inspection rule: specifies probability that an agent will be inspected as a
function of profile of reported types.
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Allocation Rules

For simplicity assume 2 agents.

a is an allocation rule

ai (t, s) is probability good is allocated to agent i when agent 1 reports t
and agent 2 reports s.

Feasibility:
a1(t, s) + a2(t, s) ≤ 1 ∀t, s

ai (t, s) ≥ 0 ∀i , ∀t, s
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Interim Allocations

Ai
t =

∑
s∈T

ai (t, s)fs

Ai
t is the interim allocation probability to agent i when she reports t.

An interim allocation probability is implementable if there exists an
allocation rule that corresponds to it.

Characterize the implementable A’s.
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Border-Maskin-Matthews-Riley

Suppose allocation rule is anonymous, i.e., does not depend on names.

Ai
t = Aj

t = At

At is implementable iff.

n
∑
t∈S

ftAt ≤ 1− (
∑
i 6∈S

ft)
n ∀S ⊆ T .

g(S) = 1− (
∑

i 6∈S ft)
n is monotone and submodular.
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Interim Allocations

Assume T = {t, t ′} and S = {s, s ′}. Here are all the inequalities:

a1(t, s) + a2(t, s) ≤ 1

a1(t
′, s) + a2(t

′, s) ≤ 1

a1(t
′, s ′) + a2(t

′, s ′) ≤ 1

a1(t, s
′) + a2(t, s

′) ≤ 1

a1(t, s)fs + a1(t, s
′)fs′ = A1

t

a1(t
′, s)fs + a1(t

′, s ′)fs′ = A1
t′

a2(t, s)ft + a2(t
′, s)ft′ = A2

s

a2(t, s
′)ft + a2(t

′, s ′)ft′ = A2
s′
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Interim Allocations

ft fsa1(t, s) + ft fsa2(t, s) ≤ ft fs

ft′fsa1(t
′, s) + ft′fsa2(t

′, s) ≤ ft′fs

ft′fs′a1(t
′, s ′) + ft′fs′a2(t

′, s ′) ≤ ft′fs′

ft fs′a1(t, s
′) + ft fs′a2(t, s

′) ≤ ft fs′

ft fsa1(t, s) + ft fs′a1(t, s
′) = ftA1

t

ft′fsa1(t
′, s) + ft′fs′a1(t

′, s ′)) = ft′A1
t′

ft fsa2(t, s) + ft′fsa2(t
′, s) = fsA2

s

ft fs′a2(t, s
′) + ft′fs′a2(t

′, s ′) = fs′A2
s′

xi (u, v) = fufvai (u, v).
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Interim Allocations

x1(t, s) + x2(t, s) ≤ ft fs

x1(t
′, s) + x2(t

′, s) ≤ ft′fs

x1(t
′, s ′) + x2(t

′, s ′) ≤ ft′fs′

x1(t, s
′) + x2(t, s

′) ≤ ft fs′

x1(t, s) + x1(t, s
′) = ftA1

t

x1(t
′, s) + x1(t

′, s ′) = ft′A1
t′

x2(t, s) + x2(t
′, s) = fsA2

s

x2(t, s
′) + x2(t

′, s ′) = fs′A2
s′
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Allocation with Inspection

At is interim allocation probability to type t ∈ T .

1− c(t) is the probability of checking a report of type t conditional
on the good being allocated to a type t.

Total value less the cost of inspection is

m∑
t=1

fttAt − K
m∑

t=1

ftAt(1− c(t))
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Allocation with Inspection

max
m∑

t=1

fttAt − K
m∑

t=1

ftAt(1− c(t))

s.t. tAt ≥ tAsc(s) ∀t, s ∈ T (1)

0 ≤ c(t) ≤ 1 ∀t ∈ T (2)

n
∑
t∈S

ftAtt ≤ 1− (
∑
t 6∈S

ft)
n = g(S) ∀S ⊆ T (3)
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Allocation with Inspection: IC

Bayesian incentive compatibility constraint captured here by:

tAt ≥ tAsc(s) ∀t, s ∈ T

⇒ At ≥ Asc(s) ∀t, s ∈ T

This is dual to problem of finding a feasible flow in a generalized network.

Associate node with each member of T and for each ordered pair (t, s)
insert a directed edge from t to s with flow multiplier c(s).

System is feasible iff the associated network has no flow generating cycles.

For any subset R of types we must have Πt∈Rc(t) ≤ 1.

Rakesh V. Vohra () LP&Mech August 2012 19 / 47



Allocation with Inspection

At ≥ Asc(s) ⇒ As ≤
At

c(s)

Never good to inspect t = 1. So, c(1) = 1. Therefore, At ≥ A1 for all
t ∈ T .

As ≤
A1

c(s)
∀s ∈ T .
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Allocation with Inspection: Relaxation

max
∑
t∈T

ftAt [t − K + Kc(t)]

s.t. c(t) ≤ A1

At
∀t ∈ T

At ≥ A1 ∀t ∈ T

0 ≤ c(t) ≤ 1 ∀t ∈ T

n
∑
t∈S

ftAt ≤ g(S) ∀S ⊆ T

c(t) = min{A1
At

, 1} = A1
At

.
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Allocation with Inspection: Relaxation

max
m∑

t=1

ftAt [t − K ] + KA1

s.t. A1 ≤ At ∀t ∈ T

n
∑
t∈S

ftAt ≤ g(S) ∀S ⊆ T

1 At = xt +A1 for all t ≥ 2

2 H(S) = g(S)− nA1
∑

i∈S fi .

3 H is submodular.

4 For A1 ≤ minS
g(S)

n
P

t∈S ft
, H is monotone.
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Allocation with Inspection: Relaxation

(
m∑

t=1

tft)A1 + max
m∑

t=2

ftxt [t − K ]

s.t. n
∑
t∈S

ftxt ≤ H(S) ∀S ⊆ T \ {1}

One more change of variables:zt = ftxt for all t ≥ 2.
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(
m∑

t=1

tft)A1 + max
m∑

t=2

zt [t − K ]

s.t. n
∑
t∈S

zt ≤ H(S) ∀S ⊆ T \ {1}

1 Set zt = 0 for all t ≤ K . Therefore At = A1.

2 c(t) = 1 for all t ≤ K .

3 There is a cutoff, λ so that in any profile of types, award the object
to the agent with the highest type provided it exceeds λ.

4 Inspect their report with positive probability. The probability of
inspection rises with t.

5 If all reported types fall below the cutoff, randomize equally between
all types below λ and don’t inspect.
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Allocation with Transfers (Myerson)

max
m∑

t=1

ftpt

s.t. tAt − pt ≥ tAs − ps ∀t, s ∈ T

n
∑
t∈S

ftAtt ≤ 1− (
∑
t 6∈S

ft)
n = g(S) ∀S ⊆ T
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Digression: Shortest Path

N be the node-arc incidence matrix of a network G = (V ,A) with a single
source node s and sink node t.

cij is length of arc (i , j).

bs,t be the vector such that bs,t
i = 0 for all i ∈ V \ {s, t}, bs,t

s = −1 and
bs,t
t = 1.
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Digression: Shortest Path

The shortest path problem is

min{cx : N x = bs,t , x ≥ 0}.

Dual is
min yt − ys

s.t. yi − yj ≤ cij ∀(i , j) ∈ E

Primal is bounded iff. dual is feasible.
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Allocation with Transfers

pt − ps ≤ t(At −As)

No negative cycles equivalent to At is monotone in t

pt upper bounded by length of shortest path to t

pt = tAt −
∑

j≤t−1

Aj
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Allocation with Transfers

max
m∑

t=1

ft

tAt −
t−1∑
j=0

Aj

 =
m∑

y=1

ft

{
t − 1− F (t)

f (t)

}
At

s.t. At ≥ At−1 ∀t ∈ T

n
∑
t∈S

ftAtt ≤ 1− (
∑
t 6∈S

ft)
n = g(S) ∀S ⊆ T
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Rationalizability (Afriat)

Set of purchase decisions {pi , xi}n
i=1 is rationalizable by

locally non-satiated,

quasi-linear,

concave utility function u : Rm
+ 7→ R

for some budget B

if for all i ,

xi ∈ arg max{u(x) + s : pi · x + s = B, x ∈ Rm
+}.

Rakesh V. Vohra () LP&Mech August 2012 30 / 47



Rationalizability

If at price pi , pi · xj ≤ B, it must be that xj delivers less utility than xi .

u(xi ) + B − pi · xi ≥ u(xj) + B − pi · xj

⇒ u(xj)− u(xi ) ≤ pi · (xj − xi )

Given set {(pi , xi )}n
i=1 we formulate the system:

yj − yi ≤ pi · (xj − xi ), ∀i , j s.t. pi · xj ≤ B
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Rationalizability

yj − yi ≤ pi · (xj − xi ), ∀i , j s.t. pi · xj ≤ B (4)

1 One node for each i .

2 For each ordered pair (i , j) such that pi · xj ≤ B, an arc with length
pi · (xj − xi ).

3 The system (4) is feasible iff. associated network has no negative
length cycles.
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Rationalizability

Use any feasible choice of {yj}n
j=1 to construct a concave utility.

Set u(xi ) = yi .

For any other x ∈ Rn
+ set

u(x) = min
i=1,...,n

{u(xi ) + pi · (x − xi )}.
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Allocation via Rounding (Nguyen & Vohra)

Allocating Indivisible Objects

1 Physical Division

2 Hold in common

3 Compensation

4 Exchange for something divisible

5 Unbundle attributes

6 Lottery

7 Rotation

8 Removal
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k-unit demand

1 No agent wishes to consume more than k goods.

2 u(S) = maxA⊆S :{u(A) : |A| ≤ k} for any bundle S .

3 There is a partition P1, . . . ,Pt such that |Pr | ≤ k for all r = 1, . . . , t.
Also

u(S) =
t∑

r=1

u(S ∩ Pr ).
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Approximate Walrasian

1 G set of distinct goods.

2 sj the (integral) supply of good j ∈ G

3 Assume no agent wishes to consume more than one copy of any
j ∈ G .

When agents have quasi-linear preferences and k-unit demand, there exist
Walrasian prices where the excess demand for any good is at most k − 1.
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Course Assignment

1 G set of distinct classes.

2 sj the (integral) supply of seats in class j ∈ G

3 No agent wishes to consume more than one copy of any j ∈ G .

Under the k-demand assumption there is a lottery over assignments of
classes to agents that is

1 approximately efficient, and, ex-ante envy-free.

2 The lottery is asymptotically strategy-proof.

3 The allocation consumes no more than sj + k − 1 seats of j ∈ G .
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Iterative Rounding Mechanism

N set of agents.

G set of distinct goods and sj the (integral) supply of good j ∈ G .

No agent wishes to consume more than one copy of any j ∈ G .

xi (S) = 1 if the bundle S ⊆ G is assigned to agent i ∈ N and zero
otherwise.

An assignment {xi (S)}i∈N,S⊆G is feasible if:∑
S⊆G

xi (S) ≤ 1 ∀i ∈ N (5)

∑
i∈N

∑
S3j

xi (S) ≤ sj ∀j ∈ G (6)
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Iterative Rounding

IRM takes as input an extreme point, x∗ ∈ arg max{u · x : x ∈ P} where
u ≥ 0 and ui (S) = 0 for all i ∈ N and S ⊆ G such that |S | > k.

Round x∗ into a 0-1 vector x̄ that satisfies∑
S⊆G

xi (S) ≤ 1 ∀i ∈ N

and is such that ∑
i∈N

∑
S3j

x̄i (S) ≤ sj + k − 1 ∀j ∈ G . (7)
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Iterative Rounding

Beginning with x∗, remove from (5-6) all variables xi (S) for which
x∗i (S) = 0.

Remove from (5-6) all variables xi (S) for which x∗i (S) = 1 and adjust the
right hand sides of (6) accordingly.

In system that remains pick a non-negative extreme point (fractional or
otherwise) that optimizes the vector c and repeat.

At some iteration, an extreme point with no variable set to 1. Call it y .
There must exist a j ∈ G such that

|{i ∈ N : yi (S) > 0, S 3 j}| ≤ sj + k − 1.

For each such j , remove the corresponding constraint (6) and in relaxed
system find an extreme point that optimizes c and repeat.

Stop once all variables have been fixed at either 0 or 1 and denote the
resulting 0-1 vector by x̄ .
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Iterative Rounding

1 At each iteration, inequality (5) holds. Thus, x̄ satisfies (5).

2 At each iteration, the original program is (possibly) relaxed. Thus,
u · x̄ ≥ u · x∗.

3 Because x̄i (S) = 1 only if x∗i (S) > 0, it follows that on the
inequalities in (6) thrown away,

∑
i∈N

∑
S3j x̄i (S) ≤ sj + k − 1.
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Iterative Rounding

Király, Lau and Singh (2008)

Lemma

Let ui (S) ≥ 0 and ui (S) = 0 for all |S | > k. Let x∗ be an extreme point
of P in arg max{u · x : x ∈ P} such that x∗i (S) < 1 for all i ∈ N and
S ⊆ G. Then, there exists a j ∈ G such that

|{i ∈ N : x∗i (S) > 0, S 3 j}| ≤ sj + k − 1.
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Iterative Rounding

|N| < |G |.

An extreme point of (5-6) can have at most |N|+ |G | non-zero variables.

As x∗i (S) < 1 for all i ∈ N and S ⊆ G , it follows that for each i ,
|{S : x∗i (S) > 0}| ≥ 2.

Hence, the number of non-zero variables in x∗ is at least 2|N|. Therefore,
|N| ≤ |G |.
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Iterative Rounding

Let zi (S) = 1 if x∗i (S) > 0 and zero otherwise. Suppose conclusion of the
lemma is false. ∑

i∈N

max
S3j

{zi (S)} > sj + k − 1 ∀j ∈ G . (8)

Adding inequality (8) up over j ∈ G and using the fact that zi (S) = 1
implies |S | ≤ k gives:∑

j∈G

sj + |G |(k − 1) <
∑
j∈G

∑
i∈N

max
S3j

{zi (S)} ≤
∑
i∈N

k max
S⊆G

zi (S) ≤ k|N|

As the left hand side of the above is bounded below by k|G | and
|N| < |G |, contradiction.
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Iterative Rounding

Let Qk = {x ∈ P : xi (S) = 0 ∀i , ∀|S | > k} and let Ek be the set of
non-negative integral solutions to∑

S⊆G

xi (S) ≤ 1 ∀i ∈ N

∑
i∈N

∑
S3j

x̄i (S) ≤ sj + k − 1 ∀j ∈ G .

Theorem

Qk is in the convex hull of Ek .
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Maxi-Min Share

A choice of x∗ that ensures the rounded solution x̄ gives to each agent a
bundle they prefer at least as much as their maxi-min share.

For each h and i ∈ N, set xi (S) = 0 for any bundle S that i ranks below
hth place in her preference ordering.

Denote the corresponding restriction of P by Ph. Let h∗ be the smallest
index such that Ph∗ is non-empty.

Choose u that satisfies the conditions of the lemma and let x∗ be an
extreme point solution of max{u · x : x ∈ Ph∗}.

The corresponding x̄i (S) = 1 only if x∗i (S) > 0, it follows that each agent
receives a bundle that she ranks in place h∗ or higher.
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Envy-Free

ui (S) is von-Neumann Morgenstern utility that agent i assigns to bundle S
(not necessarily quasi-linear).

A fractional allocation x ∈ P is ex-ante envy-free if∑
S⊆G

ui (S)xi (S) ≥
∑
S⊆G

ui (S)xj(S) ∀i ∀j 6= i

Choose an x∗ in Qk that is envy-free and maximizes
∑

i

∑
S ui (S)xi (S). It

can be expressed as a lottery over the elements in Ek .
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