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The Big Questions

0 How does the structure of networks
Impact outcomes:

» In different locations within the network and
across different network architectures

= Static and dynamic

o How do networks form to begin with
(given the interactions that occur over
them)
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Games on Networks

O g is network (in {0,1}™n):

! | # ] connected
i 770 otherwise

O N.(g) i's neighborhood,

N, (9) ={j|g; =1}
o di(g)=[Ni(g)| i's degree

o Each player chooses an action in {0,1}
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Payoftt Structure: (today) Complements

o Payoffs depend only on the number of neighbors
choosing O or 1.

o normalize payoff of all neighbors choosing 0 to 0

o v(d,x) - ¢ payoff from choosing 1 if degree is d
and a fraction x of neighbors choose 1
m Increasing in x

O ¢, distributed according to H



FExamples (payott: v(d,x)-c)

o Average Action: v(d,x)=v(d)x= X
(classic coordination games, choice of technology)

o Total Number: v(d,x)=v(d)x=dx

(learn a new language, need partners to use new good or
technology, need to hear about it to learn)

o Critical Mass: v(d,x)=0 for x up to some M/d and
v(d,x)=1 above M/d

(uprising, voting, ...)

o Decreasing: v(d,x) declining in d

(information aggregation, lower degree correlated with
leaning towards adoption)



(today) Incomplete information case:

o g drawn from some set of networks G such
that:
= degrees of neighbors are independent
= Probability of any node having degree d is p(d)

= probability of given neighbor having degree d is
P(d)=dp(d)/E(d)



Equilibrium as a fixed point:

o H(v(d,x)) is the percent of degree d types
adopting action 1 if x is fraction of random
neighbors adopting.

o Equilibrium corresponds to a fixed point:
x = @(x) = 2 P(d) H(v(d,x))
= 2 d p(d) H(v(d,x)) / E[d]
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Equilibrium as a fixed point:

o H(v(d,x)) is the percent of degree d types
adopting action 1 if x is fraction of random
neighbors adopting.

o Equilibrium corresponds to a fixed point:
x = ¢(x) = 2 P(d) H(v(d,x))

0 Fixed point exists
oIf H(0)=0, x=0 is a fixed point



Monotone Behavior

Observation 1:

In a game of incomplete information, every
symmetric equilibrium is monotone

O nondecreasing in degree if v(d,X) is increasing in d
O nonincreasing in degree if v(d,x) is decreasing in d

Expected payoffs move in the same direction
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Intuition

o Symmetric equilibrium - a random neighbor has
probability x of choosing 1, probability 1-x of
choosing 0.



Monotone Behavior

Intuition

o Symmetric equilibrium - a random neighbor has
probability x of choosing 1, probability 1-x of
choosing 0.

o Consider agent of degree d+1
= v(d,x) nondecreasing — payoff from 1 is v(d+1,x)=v(d,Xx).
= v(d,x) nonincreasing — payoff from 1 is v(d+1,x)<v(d,x).
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o start with some x°
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Diffusion

x = @(x) = 2 P(d) H(v(d,x))

o start with some x°
o let xt = @( x9), xt = p(xt+1), ...

0 Interpretations
= examining equilibrium set with incomplete information
Stable equilibria are converged to from above and below

= looking at diffusion: complete information best response
dynamics on “large, well-mixed” social network
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Stability at 0

P(x)<x in a neighborhood around O
(joint condition on H, v(d,x), P(d))

If H is continuous, and O is stable, then
“generically”: next unstable (first tipping

point, where volume of adopters grows),
next is stable, etc.
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How can we relate structure (network

or payoff) to diffusion’

o Keep track of how ¢ shifts with changes

[concentrating on regular environments]
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FOSD Shifts

o P(d) First Order Stochastically Dominates
P'(d) if:

P(d) < P'(d) for all d

o For any increasing function f(d):

D f@P@ =) f@AP @
d d
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Adding Links

o Consider a FOSD shift in distribution P(d)

= More weight on higher degrees

= v(d,x) nondecreasing in d = Higher expectations of
higher actions (Observation 1)

= More likely to take higher action

o If v(d,x) is nondecreasing in d, then this leads to
a pointwise increase of

¢ (x) = 2 P(d) H(v(d,x))

o lower tipping point and higher stable equilibrium
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Coauthorships and Poisson
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FIGURE 3.1 Comparison of the degree distributions of a coauthorship network and a
Poisson random network with the same average degree.




Example - Coauthor versus Romance
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Co-author versus Romance

o Example: adopt if chance that at least
one neighbor adopts exceeds .95 (1-(1-
x)d>c=.95)

0 Romance stable equilibrium:
= degree 3 and above adopt
= Prob given neighbor adopts x = .65
= Percent adopting = .29

o Coauthor stable equilibrium:
= degree 2 and above adopt
= Prob given neighbor adopts x = .91
= Percent adopting = .55
= Utility higher



Raising Costs

o Raising of costs of adoption of action 1
(FOSD shift of H) lowers ¢@(x) pointwise

= raises tipping points, lowers stable equilibria
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MPS Shifts

o P(d) is a Mean Preserving Spread of P'(d)
if P and P’ correspond to identical means
and:

i ZiP '(d) foralld”

o For any convex function f(d):

) f@P@ =) F@P @
d d



Increasing Variance of Degrees

o v(d,x) increasing convex in d, H convex
= e.g., v(d,x)=dx, H uniform[0,C] (with high C)

op’is MPS of p implies ¢p(x) is pointwise
higher under p’

o Roughly, increasing variance leads to
lower tipping points and higher stable
equilibria



Intuition:

o MPS increases number of high degree
nodes. With increasing v, they adopt in
greater numbers and thus decrease
tipping point



Intuition:

o MPS increases number of high degree
nodes. With increasing v, they adopt in
greater numbers and thus decrease
tipping point

o Convexity in v and H: the increases of
adoption rates from higher degrees more
than offset the decrease in rates from
lower degrees; leads to higher overall
equilibrium



Can we relate the payoff structure to
equilibrium?

o Assume v(d,x)=v(d)x
o Vary v(d)

o If we can influence v, whom should we
target to shift equilibrium?
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Consider changing v(d) by rearranging its ordering.
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Proposition: impact of v(d)

Consider changing v(d) by rearranging its ordering.

If p(d)d increasing, then v(d) increasing raises ¢(Xx)
pointwise (raises stable equilibria, lowers unstable)

[e.g., p is uniform]

If p(d)d decreasing, then v(d) decreasing raises ¢(Xx)
pointwise (lowers stable equilibria, raises unstable)

[e.g., p is power]



Optimal Targeting

o Goes against idea of “targeting” high
degree nodes

o Want the most probable neighbors to have
the best incentives to adopt



What about adoption rates?

0 Does adoption speed up or slow down?

0 How does this depend on payoff/network
structure?

o How does it differ across d?



Adoption varied across d

o if v(d,x) is increasing in d, then clearly
higher d adopt in higher percentage for
each X

= adoption fraction is H(v(d,x)) which is
Increasing

O Patterns over time?



Speed of adoption over time

If H(0)=0 and H is C2 and increasing

o If H is concave, then ¢(x)/Xx is decreasing

= Convergence upward slows down, convergence
downward speeds up

o If H is convex, then ¢(x)/X is increasing

= Convergence upward speeds up, convergence
downward slows down



Ditftusion Across Degrees

Adoption

1

Rate

0.9
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0.7

0.6

0.5

04

0.3

0.2

0.1

o

fraction adopting over time, power distribution
exponent -2, initial seed x=.03, costs Uniform[1,5], v(d)=d
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Summary:

o Networks differ in structure — Capture some
aspects by degree distribution



Summary:

O Location matters:
= v(d,x) increasing in d
o more connected adopt “earlier,” at higher rate
o have higher expected payoffs



Summary:

o Structure matters:
= Lower tipping points, raise stable equilibria if:
lower costs (downward shift FOSD of H)
increase in connectedness (FOSD shift of P)
MPS of p if v, H (weakly) convex

match higher propensity v%d) to more prevalent degrees
p(d)d (want decreasing v for power laws)

= adoption speeds vary over time depending on curvature of
the cost distribution



Network Formation

o Two simple (mechanical) models
generating Poisson and Power-like
distributions

o One simple (strategic) model generating
similarity between connected nodes
(homophily)



Uniform Randomness

o Index nodes by birth time: node i born at
i=0,1,2,...

O d;(t) — degree of node i attime t



Uniform Randomness

0 Index nodes by birth time: node i born at
i=0,1,2,...

O d;(t) — degree of node i at time t
o d;(i) = number of links formed at birth

o d;(t) — d;(i) — number of links formed between |
and nodes born between i+1 and t



Dynamic Connections

o Suppose we start with m+1 nodes all connected
(born in periods 0,...,m)

o From m+1 and on, each newborn node connects
to m random nodes.



Dynamic Connections

o Suppose we start with m+1 nodes all connected
(born in periods 0,...,m)

o From m+1 and on, each newborn node connects
to m random nodes.

o Consider expected degrees



Continuous Time Approximation

o Initial condition: d;(i) = m

o Approximate change over time:

ddi _ ™ forall t > i
dt t

O This ODE has the solution:

t
di(t) =m+m=x log(z)
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o For any d, t, find i(d) such that:

diay(t) =d
o Then,

@ =11

o Solving we get:
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Deducing Degree Distribution

o For any d, t, find i(d) such that:

diay(t) =d
o Then,
i(d
o Solving we get:
t ) i(t) _d-m
L

d=m+m*log(@

_da-m
SlFid)=1—e m
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o Price (1976), Barabasi and Albert (1999)

o As before, nodes attach randomly, but with
probabilities proportional to degrees



Prefterential Attachment

o Price (1976), Barabasi and Albert (1999)

o As before, nodes attach randomly, but with
probabilities proportional to degrees

o At t, probability i receives a new link to the
newborn is:
d;(t)

m
i=1d;(®)
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Prefterential Attachment

o There are tm links overall — ¥%_, d;(t)=2tm

O So probability i receives a new link:

o di(t)  di(t)
Lidi(t) 2t

0 The continuous-time approximation is then:
dd;(¢) _ di(t)
dt 2t




Prefterential Attachment

o Can replicate analysis before to get:
F,(d) =1—m?d*
0 The density is then:
f,(d) = 2m?d~3

o Power distribution with degree 3!
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and Merton, 1954):

= Socially connected individuals tend to be
similar



Homophily in Peer Groups

o Homophily = love for the same (Lazarsfeld
and Merton, 1954):

= Socially connected individuals tend to be
similar

o0 Evidence across the board and across
fields (mostly correlational): Politics,
Sociology, Economics



Homophily

TABLE 3.4
Friendship frequencies (in percent) compared to population percentages by ethnicity
in a Dutch high school

Ethnicity of students

Dutch Moroccan  Turkish  Surinamese Other
(m=2850) (n=62) (=735 (a=100) (n=230)

Percentage of 65 3 6 % 17
the population

(rounded)

Percentage of 79 27 59 BB 30

friendships with
own ethnicity

Source: Based on data from Baerveldt et al. [27].



Westridge

= Goeree, McConnell, Mitchell, Tromp, Yariv, 2009




Homophily — Westridge

O 53% of direct friends are of the same race while
41% of all other friends are of the same race

Race 60%
Confidence | 53%
Popularity | 53%
Height 55%




Homophily — Westridee (2)

Asian

Middle Eastern

Black

Hispanic

=B

White

Mixed
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The Question

» In many realms agents choose whom to interact with, socially
or strategically
» Examples: political parties, clubs, internet forums,
neighborhoods, etc.

> New technologies tend to remove geographical constraints in
many interactions

> Yet, in the literature, group of players is commonly exogenous

> It is often considered how endowments (demographics,
preferences, etc.) of players affect outcomes

» Now: endowments determine friendships that, in turn, affect
outcomes

» Study the structure of (endogenous) groups, predicting both
friendships and outcomes
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The Goal (Baccara and Yariv, 2012)

> Provide a simple, information-based model to analyze how
individuals choose peer groups prior to a strategic interaction
» individuals differ in how much they care about each of two
dimensions (e.g., savings and education, food and music, etc.)
> individuals in a group play a public good (i.e. information)
game

» Understand the elements determining the emergence of
homophily (or heterophily)
» information gathering cost

> group size (communication costs)
> population attributes
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A Model of Information Sharing among Friends

» Two issues, A, B € {0,1} determined at the outset. For
simplicity: P(A=1)=P(B=1) = %

> n agents in a group. Each agent makes a decision on each
dimension

v=(va,vg) € V={01}x{0,1}

» Each agent i characterized by taste t; € [0, 1]. The utility of
agent i/ from choosing v when the realized states are A and B :

U,'(V, A, B) = l’/lA(VA) + (1 — t,')].B(VB)
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Information Structure

» Before choosing v € V, agents have access to information.

» Each agent / selects simultaneously an information source
xi € {a, B} . Source « provides a signal s € {0,1, &}

Pr(s=A) =gy >1/2, Pr(s=9)=1—qa

Similarly, source B provides the realized state B with
probability gg > 1/2.

» Signals are conditionally i.i.d.

» What makes a group? After information sources are
selected, all signals are realized and made public within the

group.



= If k agents choose x = «,

» probability that state A is revealed is 1 — (1 — CIa>k
» probability of making the right decision on A is
k
1- % (1—qa)
» Similarly for x =
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Our Methodology

1. Given a group of agents t; > t, > ... > t,, we characterize
equilibrium information collection

2. We step backward: given a group size n, an agent of type
t € [0,1] can choose the other n — 1 agents in her group

» We characterize the optimal group choice for each agent t

3. We characterize the stable groups:

> A group is stable if it is optimal for all its members

4. We characterize optimal group choice and stable groups when:
> Information is free

» Information is costly: every signal costs ¢ > 0

5. We consider a finite population and we consider the stable
allocations on this population into groups



Free Information: Information Collection Equilibrium
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» Equilibrium sources: (x1,..,x,) € {a, B}"



Free Information: Information Collection Equilibrium

» Consider a group of agents (t1,...ty), t1 = th > ... > t,
» Equilibrium sources: (x1,..,x,) € {a, B}"

Lemma 1 If there exist i < j such that x; = B and x; = a, then

(Y1, - ¥n) € {a, B}", where y; = x for all | #i,j, yj = & and
yj = B is an equilibrium as well

ty S tpo1 <o Stpl S B S o1 < St

source ﬂ source «

== The equilibrium number of a-signals (k) and B-signals (n — «)
is uniquely determined
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Free Information: Optimal Group Choice for Type t

Let n%(t) be the optimal number of a-signals for type t when
group size is n

n%(t) equates marginal contribution of an a-signal and a pB-signal

For any t, the class of optimal groups t; > ... > t, (one of which
is t) entails:

» nf (t) agents getting « signals (above the threshold t(nf (t)))
and

» n— nf (t) agents getting B signals (below the threshold
t"(nf (t) +1))
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Free Information Case: Stability

Proposition 1

(i) Thereexist 0 =t" (0) < t"(1) < ..<t"(n)<t"(n+1)=1
such that a group (t1, ...., t) is stable if and only if there exists
k =0, .., n such that for all i,

ti € [t"(k),t"(k+1)] = T/

(ii) The intervals T] are wider for moderate types and narrower for
extreme types

= Note: Same characterization if each agent acquires h > 1
signals: in stable groups agents agree on allocation of n X h signals
across « and B
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n’ > n = Non-extreme intervals do not converge to points
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Convergence for Large n

Proposition 2
Consider two agents of taste parameters t, t’.

1. If they belong to a non-extreme stable group of size n > 2,
they belong to a non-extreme stable group of some size
n’ > n = Non-extreme intervals do not converge to points

2. Extreme stable groups become fully homogeneous (containing

only t =0,1) as n diverges = The extreme intervals
converge to the extremes O and 1

= Implication: As group size increases, more homophily for
extreme types, stable for moderate types
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Stable Groups with Free Information

» Cohesive, larger intervals for moderates, narrower for
extremists.

» Implication: As geographical constraints decrease (e.g.
automobile, Internet, etc.) = Homogeneity increases
(consistent with Lynd and Lynd (1929)). Stronger for extreme
than for moderates

» For moderates, heterogeneity persists for large group size

» Implication: As connection costs decrease (e.g., email, chats,
sms, online social networking, etc.) = Homogeneity
increases more for extreme individuals than for moderate ones

» Empirically, deducing preferences directly from individual
actions is problematic = Important to account for public
goods obtained from friendships



The End
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