Diffusion and Strategic Interaction on Social Networks

Leeat Yariv

Summer School in Algorithmic Game Theory, Part 2, 8.7.2012

The Big Questions

- How does the structure of networks impact outcomes:
 - In different locations within the network and across different network architectures
 - Static and dynamic
- How do networks form to begin with (given the interactions that occur over them)

lacksquare g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

□ N_i(g) i's neighborhood,

$$\boldsymbol{N}_{i}(\boldsymbol{g}) = \{\boldsymbol{j} \middle| \boldsymbol{g}_{ij} = 1\}$$

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

 \square $N_i(g)$ i's neighborhood,

$$\boldsymbol{N}_{i}(\boldsymbol{g}) = \{\boldsymbol{j} \middle| \boldsymbol{g}_{ij} = 1\}$$

 \Box $d_i(g) = |N_i(g)|$ i's degree

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

■ N_i(g) i's neighborhood,

$$N_i(\mathbf{g}) = \{ \mathbf{j} \middle| \mathbf{g}_{ij} = 1 \}$$

- \Box $d_i(g) = |N_i(g)|$ i's degree
- Each player chooses an action in {0,1}

Payoffs depend only on the number of neighbors choosing 0 or 1.

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0
- v(d,x) c_i payoff from choosing 1 if degree is d and a fraction x of neighbors choose 1
 - Increasing in x (positive externalities)

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0
- $\mathbf{v}(d,x) c_i$ payoff from choosing 1 if degree is d and a fraction x of neighbors choose 1
 - Increasing in x
- c_i distributed according to H

Examples (payoff: v(d,x)-c)

- Average Action: v(d,x)=v(d)x=x (classic coordination games, choice of technology)
- □ Total Number: v(d,x)=v(d)x=dx (learn a new language, need partners to use new good or technology, need to hear about it to learn)
- Critical Mass: v(d,x)=0 for x up to some M/d and v(d,x)=1 above M/d (uprising, voting, ...)
- Decreasing: v(d,x) declining in d (information aggregation, lower degree correlated with leaning towards adoption)

(today) Incomplete information case:

- g drawn from some set of networks G such that:
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)

Equilibrium as a fixed point:

H(v(d,x)) is the percent of degree d types adopting action 1 if x is fraction of random neighbors adopting.

Equilibrium corresponds to a fixed point:

$$x = \phi(x) = \sum P(d) H(v(d,x))$$
$$= \sum d p(d) H(v(d,x)) / E[d]$$

Equilibrium as a fixed point:

- H(v(d,x)) is the percent of degree d types adopting action 1 if x is fraction of random neighbors adopting.
- Equilibrium corresponds to a fixed point:

$$x = \phi(x) = \sum P(d) H(v(d,x))$$

Fixed point exists

Equilibrium as a fixed point:

- H(v(d,x)) is the percent of degree d types adopting action 1 if x is fraction of random neighbors adopting.
- Equilibrium corresponds to a fixed point:

$$x = \phi(x) = \sum P(d) H(v(d,x))$$

- Fixed point exists
- □ If H(0)=0, x=0 is a fixed point

Monotone Behavior

Observation 1:

In a game of incomplete information, every symmetric equilibrium is monotone

- \square nondecreasing in degree if v(d,x) is increasing in d
- \square nonincreasing in degree if v(d,x) is decreasing in d

Expected payoffs move in the same direction

Monotone Behavior

Intuition

■ Symmetric equilibrium – a random neighbor has probability x of choosing 1, probability 1-x of choosing 0.

Monotone Behavior

Intuition

- Symmetric equilibrium a random neighbor has probability x of choosing 1, probability 1-x of choosing 0.
- Consider agent of degree d+1
 - $\mathbf{v}(d,x)$ nondecreasing \rightarrow payoff from 1 is $\mathbf{v}(d+1,x) \ge \mathbf{v}(d,x)$.
 - $\mathbf{v}(d,x)$ nonincreasing \rightarrow payoff from 1 is $\mathbf{v}(d+1,x) \leq \mathbf{v}(d,x)$.

Diffusion

$$x = \phi(x) = \sum P(d) H(v(d,x))$$

- □ start with some x⁰
- □ let $x^1 = \phi(x^0)$, $x^t = \phi(x^{t-1})$, ...

Diffusion

$$x = \phi(x) = \sum P(d) H(v(d,x))$$

- start with some x⁰
- □ let $x^1 = \phi(x^0)$, $x^t = \phi(x^{t-1})$, ...

Interpretations

- examining equilibrium set with incomplete information
 - Stable equilibria are converged to from above and below
- looking at diffusion: complete information best response dynamics on "large, well-mixed" social network

Stability at 0

 $\phi(x) < x$ in a neighborhood around 0 (joint condition on H, v(d,x), P(d))

If H is continuous, and 0 is stable, then "generically": next unstable (first tipping point, where volume of adopters grows), next is stable, etc.

How can we relate structure (network or payoff) to diffusion?

Keep track of how φ shifts with changes

[concentrating on regular environments]

FOSD Shifts

P(d) First Order Stochastically Dominates P'(d) if:

$$P(d) \le P'(d)$$
 for all d

FOSD Shifts

P(d) First Order Stochastically Dominates P'(d) if:

$$P(d) \le P'(d)$$
 for all d

P puts more weight on higher degrees.

FOSD Shifts

P(d) First Order Stochastically Dominates P'(d) if:

$$P(d) \le P'(d)$$
 for all d

For any increasing function f(d):

$$\sum_{d} f(d)P(d) \ge \sum_{d} f(d)P'(d)$$

Adding Links

- Consider a FOSD shift in distribution P(d)
 - More weight on higher degrees
 - v(d,x) nondecreasing in d ⇒ Higher expectations of higher actions (Observation 1)
 - More likely to take higher action

Adding Links

- Consider a FOSD shift in distribution P(d)
 - More weight on higher degrees
 - v(d,x) nondecreasing in d ⇒ Higher expectations of higher actions (Observation 1)
 - More likely to take higher action
- If v(d,x) is nondecreasing in d, then this leads to a pointwise increase of

$$\phi(x) = \sum P(d) H(v(d,x))$$

Adding Links

- Consider a FOSD shift in distribution P(d)
 - More weight on higher degrees
 - v(d,x) nondecreasing in d ⇒ Higher expectations of higher actions (Observation 1)
 - More likely to take higher action
- If v(d,x) is nondecreasing in d, then this leads to a pointwise increase of

$$\phi(x) = \sum P(d) H(v(d,x))$$

lower tipping point and higher stable equilibrium

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Coauthorships and Poisson

FIGURE 3.1 Comparison of the degree distributions of a coauthorship network and a Poisson random network with the same average degree.

Example - Coauthor versus Romance

Co-author versus Romance

- Example: adopt if chance that at least one neighbor adopts exceeds .95 (1-(1-x)^d≥c=.95)
- Romance stable equilibrium:
 - degree 3 and above adopt
 - Prob given neighbor adopts x = .65
 - Percent adopting = .29
- Coauthor stable equilibrium:
 - degree 2 and above adopt
 - Prob given neighbor adopts x = .91
 - Percent adopting = .55
 - Utility higher

Raising Costs

Raising of costs of adoption of action 1
 (FOSD shift of H) lowers φ(x) pointwise

raises tipping points, lowers stable equilibria

MPS Shifts

P(d) is a Mean Preserving Spread of P'(d) if P and P' correspond to identical means and:

$$\sum_{d=0}^{d^*} P(d) \ge \sum_{d=0}^{d^*} P'(d) \text{ for all } d^*$$

MPS Shifts

P(d) is a Mean Preserving Spread of P'(d) if P and P' correspond to identical means and:

$$\sum_{d=0}^{d^*} P(d) \ge \sum_{d=0}^{d^*} P'(d) \text{ for all } d^*$$

For any convex function f(d):

$$\sum_{d} f(d)P(d) \ge \sum_{d} f(d)P'(d)$$

Increasing Variance of Degrees

- \neg v(d,x) increasing convex in d, H convex
 - e.g., v(d,x)=dx, H uniform[0,C] (with high C)
- p' is MPS of p implies φ(x) is pointwise higher under p'
- Roughly, increasing variance leads to lower tipping points and higher stable equilibria

Intuition:

MPS increases number of high degree nodes. With increasing v, they adopt in greater numbers and thus decrease tipping point

Intuition:

- MPS increases number of high degree nodes. With increasing v, they adopt in greater numbers and thus decrease tipping point
- Convexity in v and H: the increases of adoption rates from higher degrees more than offset the decrease in rates from lower degrees; leads to higher overall equilibrium

Can we relate the payoff structure to equilibrium?

 \square Assume v(d,x)=v(d)x

□ Vary v(d)

If we can influence v, whom should we target to shift equilibrium?

Proposition: impact of v(d)

Consider changing v(d) by rearranging its ordering.

Proposition: impact of v(d)

Consider changing v(d) by rearranging its ordering.

```
If p(d)d increasing, then v(d) increasing raises φ(x)
    pointwise (raises stable equilibria, lowers unstable)
    [e.g., p is uniform]
```

Proposition: impact of v(d)

Consider changing v(d) by rearranging its ordering.

```
If p(d)d increasing, then v(d) increasing raises φ(x)
    pointwise (raises stable equilibria, lowers unstable)
    [e.g., p is uniform]
```

If p(d)d decreasing, then v(d) decreasing raises φ(x)
 pointwise (lowers stable equilibria, raises unstable)
 [e.g., p is power]

Optimal Targeting

Goes against idea of "targeting" high degree nodes

Want the most probable neighbors to have the best incentives to adopt

What about adoption rates?

Does adoption speed up or slow down?

How does this depend on payoff/network structure?

■ How does it differ across d?

Adoption varied across d

- if v(d,x) is increasing in d, then clearly higher d adopt in higher percentage for each x
 - adoption fraction is H(v(d,x)) which is increasing
- Patterns over time?

Speed of adoption over time

If H(0)=0 and H is C^2 and increasing

- \square If H is concave, then $\varphi(x)/x$ is decreasing
 - Convergence upward slows down, convergence downward speeds up
- \square If H is convex, then $\varphi(x)/x$ is increasing
 - Convergence upward speeds up, convergence downward slows down

Diffusion Across Degrees

fraction adopting over time, power distribution exponent -2, initial seed x=.03, costs Uniform[1,5], v(d)=d

Tetracycline Adoption(Coleman, Katz, and Menzel, 1966)

Hybrid Corn, 1933-1952 (Griliches, 1957, and Young, 2006)

Summary:

Networks differ in structure – Capture some aspects by degree distribution

Summary:

- Networks differ in structure Capture some aspects by degree distribution
- Location matters:
 - v(d,x) increasing in d
 - more connected adopt "earlier," at higher rate
 - have higher expected payoffs

Summary:

- Networks differ in structure Capture some aspects by degree distribution
- **■** Location matters:
 - v(d,x) increasing in d
 - more connected adopt "earlier," at higher rate
 - have higher expected payoffs
- Structure matters:
 - Lower tipping points, raise stable equilibria if:
 - lower costs (downward shift FOSD of H)
 - increase in connectedness (FOSD shift of P)
 - MPS of p if v, H (weakly) convex
 - match higher propensity v(d) to more prevalent degrees p(d)d (want decreasing v for power laws)
 - adoption speeds vary over time depending on curvature of the cost distribution

Network Formation

Two simple (mechanical) models generating Poisson and Power-like distributions

 One simple (strategic) model generating similarity between connected nodes (homophily)

Uniform Randomness

□ Index nodes by birth time: node i born at i=0,1,2,...

 \Box $d_i(t)$ – degree of node i at time t

Uniform Randomness

- □ Index nodes by birth time: node i born at i=0,1,2,...
- \Box $d_i(i)$ number of links formed at birth

Dynamic Connections

- Suppose we start with m+1 nodes all connected (born in periods 0,...,m)
- □ From m+1 and on, each newborn node connects to m random nodes.

Dynamic Connections

- Suppose we start with m+1 nodes all connected (born in periods 0,...,m)
- □ From m+1 and on, each newborn node connects to m random nodes.
- Consider expected degrees

Continuous Time Approximation

- Initial condition: $d_i(i) = m$
- Approximate change over time:

$$\frac{dd_i(t)}{dt} = \frac{m}{t} \quad \text{for all } t > i$$

This ODE has the solution:

$$d_i(t) = m + m * log(\frac{t}{i})$$

□ For any d, t, find i(d) such that:

$$d_{i(d)}(t) = d$$

□ For any d, t, find i(d) such that:

$$d_{i(d)}(t) = d$$

Then,

$$F_t(d) = 1 - \frac{i(d)}{t}$$

For any d, t, find i(d) such that:

$$d_{i(d)}(t) = d$$

Then,

$$F_t(d) = 1 - \frac{i(d)}{t}$$

Solving we get:

$$d = m + m * log\left(\frac{t}{i(d)}\right) \leftrightarrow \frac{i(t)}{d} = e^{-\frac{d-m}{m}}$$

For any d, t, find i(d) such that:

$$d_{i(d)}(t) = d$$

Then,

$$F_t(d) = 1 - \frac{i(d)}{t}$$

Solving we get:

$$d = m + m * log\left(\frac{t}{i(d)}\right) \leftrightarrow \frac{i(t)}{d} = e^{-\frac{d-m}{m}}$$

$$\to F_t(d) = 1 - e^{-\frac{d-m}{m}}$$

Preferential Attachment

□ Price (1976), Barabasi and Albert (1999)

As before, nodes attach randomly, but with probabilities proportional to degrees

Preferential Attachment

□ Price (1976), Barabasi and Albert (1999)

As before, nodes attach randomly, but with probabilities proportional to degrees

At t, probability i receives a new link to the newborn is:

$$m \frac{d_i(t)}{\sum_{j=1}^t d_j(t)}$$

□ There are tm links overall $\rightarrow \sum_{j=1}^{t} d_j(t) = 2$ tm

- □ There are tm links overall $\rightarrow \sum_{j=1}^{t} d_j(t) = 2$ tm
- So probability i receives a new link:

$$m\frac{d_i(t)}{\sum_{j=1}^t d_j(t)} = \frac{d_i(t)}{2t}$$

- □ There are tm links overall $\rightarrow \sum_{j=1}^{t} d_j(t) = 2$ tm
- So probability i receives a new link:

$$m\frac{d_i(t)}{\sum_{j=1}^t d_j(t)} = \frac{d_i(t)}{2t}$$

The continuous-time approximation is then:

$$\frac{dd_i(t)}{dt} = \frac{d_i(t)}{2t}$$

Can replicate analysis before to get:

$$F_t(d) = 1 - m^2 d^{-2}$$

□ The density is then:

$$f_t(d) = 2m^2d^{-3}$$

Power distribution with degree 3!

Homophily in Peer Groups

- Homophily = love for the same (Lazarsfeld and Merton, 1954):
 - Socially connected individuals tend to be similar

Homophily in Peer Groups

- Homophily = love for the same (Lazarsfeld and Merton, 1954):
 - Socially connected individuals tend to be similar
- Evidence across the board and across fields (mostly correlational): Politics, Sociology, Economics

Homophily

TABLE 3.4
Friendship frequencies (in percent) compared to population percentages by ethnicity in a Dutch high school

_	Ethnicity of students				
	Dutch $(n = 850)$	Moroccan $(n = 62)$	Turkish $(n = 75)$	Surinamese $(n = 100)$	Other (n = 230)
Percentage of the population (rounded)	65	5	6	8	17
Percentage of friendships with own ethnicity	79	27	59	44	30 ·

Source: Based on data from Baerveldt et al. [27].

Westridge

Goeree, McConnell, Mitchell, Tromp, Yariv, 2009

Homophily – Westridge

□ 53% of direct friends are of the same race while 41% of all other friends are of the same race

Race	60%
Confidence	53%
Popularity	53%
Height	55%

Homophily – Westridge (2)

- In many realms agents choose whom to interact with, socially or strategically
 - Examples: political parties, clubs, internet forums, neighborhoods, etc.
 - New technologies tend to remove geographical constraints in many interactions

- In many realms agents choose whom to interact with, socially or strategically
 - Examples: political parties, clubs, internet forums, neighborhoods, etc.
 - New technologies tend to remove geographical constraints in many interactions
- ▶ Yet, in the literature, group of players is commonly exogenous
 - It is often considered how endowments (demographics, preferences, etc.) of players affect outcomes

- In many realms agents choose whom to interact with, socially or strategically
 - Examples: political parties, clubs, internet forums, neighborhoods, etc.
 - New technologies tend to remove geographical constraints in many interactions
- Yet, in the literature, group of players is commonly exogenous
 - It is often considered how endowments (demographics, preferences, etc.) of players affect outcomes
- Now: endowments determine friendships that, in turn, affect outcomes
 - Study the structure of (endogenous) groups, predicting both friendships and outcomes

 Provide a simple, information-based model to analyze how individuals choose peer groups prior to a strategic interaction

- Provide a simple, information-based model to analyze how individuals choose peer groups prior to a strategic interaction
 - individuals differ in how much they care about each of two dimensions (e.g., savings and education, food and music, etc.)
 - individuals in a group play a public good (i.e. information) game

- Provide a simple, information-based model to analyze how individuals choose peer groups prior to a strategic interaction
 - individuals differ in how much they care about each of two dimensions (e.g., savings and education, food and music, etc.)
 - individuals in a group play a public good (i.e. information) game
- Understand the elements determining the emergence of homophily (or heterophily)
 - information gathering cost
 - group size (communication costs)
 - population attributes

▶ Two issues, $A, B \in \{0, 1\}$ determined at the outset. For simplicity: $P(A = 1) = P(B = 1) = \frac{1}{2}$

- ▶ Two issues, $A, B \in \{0, 1\}$ determined at the outset. For simplicity: $P(A = 1) = P(B = 1) = \frac{1}{2}$
- n agents in a group. Each agent makes a decision on each dimension

$$v = (v_A, v_B) \in V = \{0, 1\} \times \{0, 1\}$$

- ▶ Two issues, $A, B \in \{0, 1\}$ determined at the outset. For simplicity: $P(A = 1) = P(B = 1) = \frac{1}{2}$
- n agents in a group. Each agent makes a decision on each dimension

$$v = (v_A, v_B) \in V = \{0, 1\} \times \{0, 1\}$$

▶ Each agent i characterized by taste $t_i \in [0, 1]$. The utility of agent i from choosing v when the realized states are A and B:

$$u_i(v, A, B) = t_i 1_A(v_A) + (1 - t_i) 1_B(v_B)$$

Information Structure

▶ Before choosing $v \in V$, agents have access to information.

Information Structure

- ▶ Before choosing $v \in V$, agents have access to information.
- ► Each agent *i* selects simultaneously an information source $x_i \in \{\alpha, \beta\}$. Source α provides a signal $s \in \{0, 1, \emptyset\}$

$$\Pr(s=A)=q_{lpha}>1/2$$
, $\Pr(s=\varnothing)=1-q_{lpha}$

Similarly, source β provides the realized state B with probability $q_{\beta} > 1/2$.

Signals are conditionally i.i.d.

Information Structure

- ▶ Before choosing $v \in V$, agents have access to information.
- ► Each agent *i* selects simultaneously an information source $x_i \in \{\alpha, \beta\}$. Source α provides a signal $s \in \{0, 1, \emptyset\}$

$$\Pr(s=A)=q_{\alpha}>1/2,\ \Pr(s=\varnothing)=1-q_{\alpha}$$

Similarly, source β provides the realized state B with probability $q_{\beta} > 1/2$.

- Signals are conditionally i.i.d.
- What makes a group? After information sources are selected, all signals are realized and made public within the group.

- \Rightarrow If k agents choose $x = \alpha$,
 - **Probability** that state A is revealed is $1 (1 q_{\alpha})^k$
 - ▶ probability of making the right decision on A is $1 \frac{1}{2} (1 q_{\alpha})^k$
 - ▶ Similarly for $x = \beta$

1. Given a group of agents $t_1 \geqslant t_2 \geqslant ... \geqslant t_n$, we characterize equilibrium information collection

- 1. Given a group of agents $t_1 \geqslant t_2 \geqslant ... \geqslant t_n$, we characterize equilibrium information collection
- 2. We step backward: given a group size n, an agent of type $t \in [0, 1]$ can choose the other n 1 agents in her group
 - ► We characterize the optimal group choice for each agent t

- 1. Given a group of agents $t_1 \geqslant t_2 \geqslant ... \geqslant t_n$, we characterize equilibrium information collection
- 2. We step backward: given a group size n, an agent of type $t \in [0, 1]$ can choose the other n 1 agents in her group
 - ▶ We characterize the optimal group choice for each agent t
- 3. We characterize the stable groups:
 - ► A group is stable if it is optimal for all its members

- 1. Given a group of agents $t_1 \geqslant t_2 \geqslant ... \geqslant t_n$, we characterize equilibrium information collection
- 2. We step backward: given a group size n, an agent of type $t \in [0, 1]$ can choose the other n 1 agents in her group
 - We characterize the optimal group choice for each agent t
- 3. We characterize the stable groups:
 - ► A group is stable if it is optimal for all its members
- 4. We characterize optimal group choice and stable groups when:
 - Information is free
 - ► Information is costly: every signal costs c > 0

- 1. Given a group of agents $t_1 \geqslant t_2 \geqslant ... \geqslant t_n$, we characterize equilibrium information collection
- 2. We step backward: given a group size n, an agent of type $t \in [0, 1]$ can choose the other n 1 agents in her group
 - We characterize the optimal group choice for each agent t
- 3. We characterize the stable groups:
 - A group is stable if it is optimal for all its members
- 4. We characterize optimal group choice and stable groups when:
 - Information is free
 - ► Information is costly: every signal costs c > 0
- 5. We consider a finite population and we consider the stable allocations on this population into groups

Free Information: Information Collection Equilibrium

- ▶ Consider a group of agents $(t_1, ..., t_n)$, $t_1 \ge t_2 \ge ... \ge t_n$
- ▶ Equilibrium sources: $(x_1, ..., x_n) \in \{\alpha, \beta\}^n$

Free Information: Information Collection Equilibrium

- ▶ Consider a group of agents $(t_1, ..., t_n)$, $t_1 \ge t_2 \ge ... \ge t_n$
- ▶ Equilibrium sources: $(x_1, ..., x_n) \in \{\alpha, \beta\}^n$

Lemma 1 If there exist i < j such that $x_i = \beta$ and $x_j = \alpha$, then $(y_1, ..., y_n) \in {\alpha, \beta}^n$, where $y_l = x_l$ for all $l \neq i, j, y_i = \alpha$ and $y_j = \beta$ is an equilibrium as well

$$\underbrace{t_n \leqslant t_{n-1} \leqslant \ldots \leqslant t_{\kappa+1}}_{\text{source } \beta} \leqslant \underbrace{t_{\kappa} \leqslant t_{\kappa-1} \leqslant \ldots \leqslant t_1}_{\text{source } \alpha} t$$

 \implies The equilibrium number of α-signals (κ) and β -signals ($n - \kappa$) is uniquely determined

Free Information: Optimal Group Choice for Type t

Free Information: Optimal Group Choice for Type t

Let $n_f^{\alpha}(t)$ be the optimal number of α -signals for type t when group size is n

 $n_f^{lpha}(t)$ equates marginal contribution of an lpha-signal and a eta-signal

Free Information: Optimal Group Choice for Type t

Let $n_f^{\alpha}(t)$ be the optimal number of α -signals for type t when group size is n

 $\mathit{n}_\mathit{f}^{\alpha}(t)$ equates marginal contribution of an lpha-signal and a eta-signal

For any t, the class of optimal groups $t_1 \geqslant ... \geqslant t_n$ (one of which is t) entails:

- ▶ $n_f^{\alpha}(t)$ agents getting α signals (above the threshold $t(n_f^{\alpha}(t))$) and
- $m n-n_f^lpha\left(t
 ight)$ agents getting m eta signals (below the threshold $t^n(n_f^lpha\left(t
 ight)+1))$

Free Information Case: Stability

Proposition 1

(i) There exist $0 = t^n(0) < t^n(1) < ... < t^n(n) < t^n(n+1) = 1$ such that a group $(t_1,, t_n)$ is stable if and only if there exists k = 0, ..., n such that for all i,

$$t_i \in [t^n(k), t^n(k+1)] \equiv T_k^n$$

Free Information Case: Stability

Proposition 1

(i) There exist $0 = t^n(0) < t^n(1) < ... < t^n(n) < t^n(n+1) = 1$ such that a group $(t_1, ..., t_n)$ is stable if and only if there exists k = 0, ..., n such that for all i,

$$t_i \in [t^n(k), t^n(k+1)] \equiv T_k^n$$

(ii) The intervals T_k^n are wider for moderate types and narrower for extreme types

Free Information Case: Stability

Proposition 1

(i) There exist $0 = t^n(0) < t^n(1) < ... < t^n(n) < t^n(n+1) = 1$ such that a group $(t_1, ..., t_n)$ is stable if and only if there exists k = 0, ..., n such that for all i,

$$t_i \in [t^n(k), t^n(k+1)] \equiv T_k^n$$

- (ii) The intervals T_k^n are wider for moderate types and narrower for extreme types
- \Rightarrow Note: Same characterization if each agent acquires $h \geq 1$ signals: in stable groups agents agree on allocation of $n \times h$ signals across α and β

Proposition 2

Consider two agents of taste parameters t, t'.

1. If they belong to a non-extreme stable group of size $n \ge 2$, they belong to a non-extreme stable group of some size $n' > n \Rightarrow Non-extreme$ intervals do not converge to points

Proposition 2

Consider two agents of taste parameters t, t'.

- 1. If they belong to a non-extreme stable group of size $n \ge 2$, they belong to a non-extreme stable group of some size $n' > n \Rightarrow Non-extreme$ intervals do not converge to points
- 2. Extreme stable groups become fully homogeneous (containing only t=0,1) as n diverges \Rightarrow The extreme intervals converge to the extremes 0 and 1

Proposition 2

Consider two agents of taste parameters t, t'.

- 1. If they belong to a non-extreme stable group of size $n \ge 2$, they belong to a non-extreme stable group of some size $n' > n \Rightarrow Non-extreme$ intervals do not converge to points
- 2. Extreme stable groups become fully homogeneous (containing only t=0,1) as n diverges \Rightarrow The extreme intervals converge to the extremes 0 and 1

⇒ Implication: As group size increases, more homophily for extreme types, stable for moderate types

- Cohesive, larger intervals for moderates, narrower for extremists.
 - ► Implication: As geographical constraints decrease (e.g. automobile, Internet, etc.) ⇒ Homogeneity increases (consistent with Lynd and Lynd (1929)). Stronger for extreme than for moderates

- Cohesive, larger intervals for moderates, narrower for extremists.
 - ► Implication: As geographical constraints decrease (e.g. automobile, Internet, etc.) ⇒ Homogeneity increases (consistent with Lynd and Lynd (1929)). Stronger for extreme than for moderates
- ► For moderates, heterogeneity persists for large group size
 - ► Implication: As connection costs decrease (e.g., email, chats, sms, online social networking, etc.) ⇒ Homogeneity increases more for extreme individuals than for moderate ones

- Cohesive, larger intervals for moderates, narrower for extremists.
 - ► Implication: As geographical constraints decrease (e.g. automobile, Internet, etc.) ⇒ Homogeneity increases (consistent with Lynd and Lynd (1929)). Stronger for extreme than for moderates
- For moderates, heterogeneity persists for large group size
 - ► Implication: As connection costs decrease (e.g., email, chats, sms, online social networking, etc.) ⇒ Homogeneity increases more for extreme individuals than for moderate ones
- ► **Empirically**, deducing preferences directly from individual actions is problematic ⇒ Important to account for public goods obtained from friendships

The End

