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The Big Questions
 How does the structure of networks 

impact outcomes:
 In different locations within the network and 

across different network architectures
 Static and dynamic

 How do networks form to begin with 
(given the interactions that occur over 
them)
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Games on Networks

 g is network (in {0,1}nxn):

 Ni(g) i’s neighborhood, 

 di(g)=|Ni(g)| i’s degree

 Each player chooses an action in {0,1}



 


otherwise0

connected 1 ji
gij

}1{)(  iji gjgN
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Payoff Structure:  (today) Complements 
 Payoffs depend only on the number of neighbors 

choosing 0 or 1.

 normalize payoff of all neighbors choosing 0 to 0

 v(d,x) – ci payoff from choosing 1 if degree is d 
and a fraction x of neighbors choose 1
 Increasing in x

 ci distributed according to H



Examples (payoff: v(d,x)-c)

 Average Action:  v(d,x)=v(d)x= x  
(classic coordination games, choice of technology)

 Total Number:  v(d,x)=v(d)x=dx 
(learn a new language, need partners to use new good or 
technology, need to hear about it to learn)  

 Critical Mass:  v(d,x)=0 for x up to some M/d and 
v(d,x)=1 above M/d 
(uprising, voting, …)

 Decreasing:  v(d,x) declining in d
(information aggregation, lower degree correlated with 
leaning towards adoption)



(today) Incomplete information case:

 g drawn from some set of networks G such 
that:
 degrees of neighbors are independent
 Probability of any node having degree d is p(d)
 probability of given neighbor having degree d is 

P(d)=dp(d)/E(d)



Equilibrium as a fixed point:

 H(v(d,x)) is the percent of degree d types 
adopting action 1 if x is fraction of random 
neighbors adopting.  

 Equilibrium corresponds to a fixed point:   
x = φ(x) = ∑ P(d) H(v(d,x))

= ∑ d p(d) H(v(d,x)) / E[d]
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Equilibrium as a fixed point:
 H(v(d,x)) is the percent of degree d types 

adopting action 1 if x is fraction of random 
neighbors adopting.  

 Equilibrium corresponds to a fixed point:   
x = φ(x) = ∑ P(d) H(v(d,x))

 Fixed point exists
 If H(0)=0, x=0 is a fixed point



Monotone Behavior

Observation 1:
In a game of incomplete information, every 

symmetric equilibrium is monotone 
 nondecreasing in degree if v(d,x) is increasing in d 
 nonincreasing in degree if v(d,x) is decreasing in d

Expected payoffs move in the same direction
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Intuition

 Symmetric equilibrium – a random neighbor has 
probability x of choosing 1, probability 1-x of 
choosing 0.



Monotone Behavior
Intuition

 Symmetric equilibrium – a random neighbor has 
probability x of choosing 1, probability 1-x of 
choosing 0.

 Consider agent of degree d+1
 v(d,x) nondecreasing → payoff from 1 is v(d+1,x)≥v(d,x).
 v(d,x) nonincreasing → payoff from 1 is v(d+1,x)≤v(d,x).



Diffusion
x = φ(x) = ∑ P(d) H(v(d,x))

 start with some x0

 let x1 = φ( x0), xt = φ(xt-1), ...

Interpretations
examining equilibrium set with incomplete information

Stable equilibria are converged to from above and below
looking at diffusion: complete information best response 

dynamics on “large, well-mixed” social network
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 let x1 = φ( x0), xt = φ(xt-1), ...

 Interpretations
 examining equilibrium set with incomplete information

 Stable equilibria are converged to from above and below
 looking at diffusion: complete information best response 

dynamics on “large, well-mixed” social network
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Stability at 0

φ(x)<x in a neighborhood around 0
(joint condition on H, v(d,x), P(d))

If H is continuous, and 0 is stable, then 
“generically”: next unstable (first tipping 
point, where volume of adopters grows), 

next is stable, etc.
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How can we relate structure (network 
or payoff) to diffusion?

 Keep track of how φ shifts with changes

[concentrating on regular environments]



xt+1

xt

φ (x)

φ’(x)

tipping point
moves down

stable equilibrium
moves up
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P puts more weight on higher degrees.
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 P puts more weight on higher degrees.
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FOSD Shifts
 P(d) First Order Stochastically Dominates 

P’(d) if:

P(d) § P’(d)   for all d

 For any increasing function f(d):

ௗ ௗ



Adding Links
 Consider a FOSD shift in distribution P(d)

 More weight on higher degrees
 v(d,x) nondecreasing in d fl Higher expectations of 

higher actions (Observation 1)
 More likely to take higher action

If v(d,x) is nondecreasing in d, then this leads to a 
pointwise increase of                        

φ (x) =  ∑ P(d) H(v(d,x))

lower tipping point and higher stable equilibrium 
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 More weight on higher degrees
 v(d,x) nondecreasing in d fl Higher expectations of 

higher actions (Observation 1)
 More likely to take higher action

 If v(d,x) is nondecreasing in d, then this leads to 
a pointwise increase of                        

φ (x) =  ∑ P(d) H(v(d,x))

 lower tipping point and higher stable equilibrium 



Bearman, Moody, and Stovel’s 
High School Romance Data



Coauthorships and Poisson



Example - Coauthor versus Romance

Prob given neighbor
has degree

Green – romance

Red - coauthor



Co-author versus Romance

 Example:  adopt if chance that at least 
one neighbor adopts exceeds .95   (1-(1-
x)d≥c=.95)

 Romance stable equilibrium:  
 degree 3 and above adopt   
 Prob given neighbor adopts x = .65
 Percent adopting = .29

 Coauthor stable equilibrium: 
 degree 2 and above adopt
 Prob given neighbor adopts x = .91
 Percent adopting = .55
 Utility higher



Raising Costs

 Raising of costs of adoption of action 1 
(FOSD shift of H) lowers φ(x) pointwise 

 raises tipping points, lowers stable equilibria



MPS Shifts
 P(d) is a Mean Preserving Spread of P’(d) 

if P and P’ correspond to identical means 
and:
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Increasing Variance of Degrees
 v(d,x) increasing convex in d,  H convex 

 e.g., v(d,x)=dx, H uniform[0,C] (with high C)

 p’ is MPS of p implies φ(x) is pointwise
higher under p’

 Roughly, increasing variance leads to 
lower tipping points and higher stable 
equilibria



Intuition:
 MPS increases number of high degree 

nodes.  With increasing v, they adopt in 
greater numbers and thus decrease 
tipping point

Convexity in v and H: the increases of 
adoption rates from higher degrees more 
than offset the decrease in rates from 
lower degrees; leads to higher overall 
equilibrium



Intuition:
 MPS increases number of high degree 

nodes.  With increasing v, they adopt in 
greater numbers and thus decrease 
tipping point

 Convexity in v and H: the increases of 
adoption rates from higher degrees more 
than offset the decrease in rates from 
lower degrees; leads to higher overall 
equilibrium



Can we relate the payoff structure to 
equilibrium?

 Assume v(d,x)=v(d)x 

 Vary v(d)

 If we can influence v, whom should we 
target to shift equilibrium?   



Proposition:  impact of v(d)

Consider changing v(d)  by rearranging its ordering.

If p(d)d increasing, then v(d) increasing raises φ(x) 
pointwise (raises stable equilibria, lowers unstable)

[e.g., p is uniform]

If p(d)d decreasing, then v(d) decreasing raises φ(x) 
pointwise (lowers stable equilibria, raises unstable)

[e.g., p is power]
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Optimal Targeting

 Goes against idea of “targeting’’ high 
degree nodes

 Want the most probable neighbors to have 
the best incentives to adopt



What about adoption rates?
 Does adoption speed up or slow down?

 How does this depend on payoff/network 
structure? 

 How does it differ across d?   



Adoption varied across d
 if v(d,x) is increasing in d, then clearly 

higher d adopt in higher percentage for 
each x
 adoption fraction is H(v(d,x)) which is 

increasing

 Patterns over time?



Speed of adoption over time

If H(0)=0 and H is C2 and increasing

 If H is concave, then φ(x)/x is decreasing
 Convergence upward slows down, convergence 

downward speeds up

 If H is convex, then φ(x)/x is increasing
 Convergence upward speeds up, convergence 

downward slows down



Diffusion Across Degrees

fraction adopting over time,  power distribution
exponent -2,  initial seed x=.03, costs Uniform[1,5], v(d)=d
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Tetracycline 
Adoption 
(Coleman, Katz, 
and Menzel, 1966) 



Hybrid Corn, 
1933-1952
(Griliches, 
1957, and 
Young, 2006)



Summary:

 Networks differ in structure – Capture some 
aspects by degree distribution

Location matters: 
v(d,x) increasing in d

more connected adopt “earlier,” at higher rate
have higher expected payoffs

Structure matters:
Lower tipping points, raise stable equilibria if:   

lower costs (in sense of downward shift FOSD of H) 
increase in connectedness (shift P in sense of FOSD)
MPS of p if v, H (weakly) convex
match higher propensity v(d) to more prevalent degrees 

p(d)d  (want decreasing v for power laws)
adoption speeds vary over time depending on curvature of the 

cost distribution 
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Summary:

 Networks differ in structure – Capture some 
aspects by degree distribution

 Location matters: 
 v(d,x) increasing in d

 more connected adopt “earlier,” at higher rate
 have higher expected payoffs

 Structure matters:
 Lower tipping points, raise stable equilibria if:   

 lower costs (downward shift FOSD of H) 
 increase in connectedness (FOSD shift  of P)
 MPS of p if v, H (weakly) convex
 match higher propensity v(d) to more prevalent degrees 

p(d)d  (want decreasing v for power laws)
 adoption speeds vary over time depending on curvature of 

the cost distribution 



Network Formation

 Two simple (mechanical) models 
generating Poisson and Power-like 
distributions

 One simple (strategic) model generating 
similarity between connected nodes 
(homophily)



Uniform Randomness
 Index nodes by birth time: node i born at 

i=0,1,2,…

 ݀௜ ݐ 	– degree of node i at time t

݀௜ ݅ 	– number of links formed at birth

݀௜ ݐ െ ݀௜ ݅ – number of links formed between i and 
nodes born between i+1 and t
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Dynamic Connections

 Suppose we start with m+1 nodes all connected 
(born in periods 0,…,m)

 From m+1 and on, each newborn node connects 
to m random nodes.

Consider expected degrees
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Continuous Time Approximation

 Initial condition: ݀௜ ݅ ൌ ݉

 Approximate change over time:

ௗௗ೔ሺ௧ሻ
ௗ௧

ൌ ௠
௧

for all t > i

 This ODE has the solution: 

݀௜ ݐ ൌ ݉ ൅݉ ∗ ሺ݃݋݈
ݐ
݅ሻ



Deducing Degree Distribution
 For any d, t,  find i(d)  such that:

݀௜ሺௗሻ ݐ ൌ ݀
Then, 

௧ܨ ݀ ൌ 1 െ
݅ሺ݀ሻ
ݐ

Solving we get:

݀ ൌ ݉ ൅݉ ∗ ݃݋݈
ݐ

݅ ݀ 	↔ 		
݅ ݐ
݀ ൌ ݁ି
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Preferential Attachment
 Price (1976), Barabasi and Albert (1999)

 As before, nodes attach randomly, but with 
probabilities proportional to degrees

At t, probability i receives a new link to the 
newborn is:

݉
݀௜ሺݐሻ

∑ ௝݀ሺݐሻ௧
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Preferential Attachment
 There are tm links overall → ∑ ௝݀ሺݐሻ௧

௝ୀଵ =2tm

So probability i receives a new link:
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Preferential Attachment
 Can replicate analysis before to get:

௧
ଶ ିଶ

 The density is then:

௧
ଶ ିଷ

 Power distribution with degree 3!



Homophily in Peer Groups

 Homophily = love for the same (Lazarsfeld
and Merton, 1954):  
 Socially connected individuals tend to be 

similar

Evidence across the board and across fields 
(mostly correlational): Politics, Sociology, 
Economics
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similar

 Evidence across the board and across 
fields (mostly correlational): Politics, 
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Homophily



Westridge
 Goeree, McConnell, Mitchell, Tromp, Yariv, 2009



81

Homophily – Westridge

 53% of direct friends are of the same race while 
41% of all other friends are of the same race

Homophilic preferences by attribute: 



Homophily – Westridge (2)



The Question

I In many realms agents choose whom to interact with, socially
or strategically

I Examples: political parties, clubs, internet forums,
neighborhoods, etc.

I New technologies tend to remove geographical constraints in
many interactions

I Yet, in the literature, group of players is commonly exogenous
I It is often considered how endowments (demographics,
preferences, etc.) of players affect outcomes

I Now: endowments determine friendships that, in turn, affect
outcomes

I Study the structure of (endogenous) groups, predicting both
friendships and outcomes
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The Goal (Baccara and Yariv, 2012)

I Provide a simple, information-based model to analyze how
individuals choose peer groups prior to a strategic interaction

I individuals differ in how much they care about each of two
dimensions (e.g., savings and education, food and music, etc.)

I individuals in a group play a public good (i.e. information)
game

I Understand the elements determining the emergence of
homophily (or heterophily)

I information gathering cost
I group size (communication costs)
I population attributes
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A Model of Information Sharing among Friends

I Two issues, A,B ∈ {0, 1} determined at the outset. For
simplicity: P(A = 1) = P(B = 1) = 1

2

I n agents in a group. Each agent makes a decision on each
dimension

v = (vA, vB ) ∈ V = {0, 1} × {0, 1}

I Each agent i characterized by taste ti ∈ [0, 1]. The utility of
agent i from choosing v when the realized states are A and B :

ui (v ,A,B) = ti1A(vA) + (1− ti )1B (vB )
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Information Structure

I Before choosing v ∈ V , agents have access to information.

I Each agent i selects simultaneously an information source
xi ∈ {α, β} . Source α provides a signal s ∈ {0, 1,∅}

Pr(s = A) = qα > 1/2, Pr(s = ∅) = 1− qα

Similarly, source β provides the realized state B with
probability qβ > 1/2.

I Signals are conditionally i.i.d.

I What makes a group? After information sources are
selected, all signals are realized and made public within the
group.
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V If k agents choose x = α,

I probability that state A is revealed is 1− (1− qα)k

I probability of making the right decision on A is
1− 1

2 (1− qα)
k

I Similarly for x = β



Our Methodology

1. Given a group of agents t1 > t2 > ... > tn, we characterize
equilibrium information collection

2. We step backward: given a group size n, an agent of type
t ∈ [0, 1] can choose the other n− 1 agents in her group

I We characterize the optimal group choice for each agent t

3. We characterize the stable groups:
I A group is stable if it is optimal for all its members

4. We characterize optimal group choice and stable groups when:
I Information is free
I Information is costly : every signal costs c > 0

5. We consider a finite population and we consider the stable
allocations on this population into groups
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Free Information: Information Collection Equilibrium

I Consider a group of agents (t1, .., tn), t1 > t2 > ... > tn
I Equilibrium sources: (x1, .., xn) ∈ {α, β}n

Lemma 1 If there exist i̇ < j such that xi = β and xj = α, then
(y1, .., yn) ∈ {α, β}n, where yl = xl for all l 6= i , j , yi = α and
yj = β is an equilibrium as well

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
tn 6 tn−1 6 ... 6 tκ+1︸ ︷︷ ︸

source β

6 tκ 6 tκ−1 6 ... 6 t1︸ ︷︷ ︸
source α

t

=⇒ The equilibrium number of α-signals (κ) and β-signals (n− κ)
is uniquely determined
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Free Information: Optimal Group Choice for Type t

Let nα
f (t) be the optimal number of α-signals for type t when

group size is n

nα
f (t) equates marginal contribution of an α-signal and a β-signal

For any t, the class of optimal groups t1 > ... > tn (one of which
is t) entails:

I nα
f (t) agents getting α signals (above the threshold t(nα

f (t)))
and

I n− nα
f (t) agents getting β signals (below the threshold

tn(nα
f (t) + 1))
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Free Information Case: Stability

Proposition 1

(i) There exist 0 = tn (0) < tn (1) < ... < tn (n) < tn (n+ 1) = 1
such that a group (t1, ...., tn) is stable if and only if there exists
k = 0, .., n such that for all i ,

ti ∈ [tn(k), tn(k + 1)] ≡ T nk

(ii) The intervals T nk are wider for moderate types and narrower for
extreme types

V Note: Same characterization if each agent acquires h ≥ 1
signals: in stable groups agents agree on allocation of n× h signals
across α and β
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Convergence for Large n

Proposition 2

Consider two agents of taste parameters t, t ′.

1. If they belong to a non-extreme stable group of size n ≥ 2,
they belong to a non-extreme stable group of some size
n′ > n ⇒ Non-extreme intervals do not converge to points

2. Extreme stable groups become fully homogeneous (containing
only t = 0, 1) as n diverges ⇒ The extreme intervals
converge to the extremes 0 and 1

⇒ Implication: As group size increases, more homophily for
extreme types, stable for moderate types
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Stable Groups with Free Information

I Cohesive, larger intervals for moderates, narrower for
extremists.

I Implication: As geographical constraints decrease (e.g.
automobile, Internet, etc.) =⇒ Homogeneity increases
(consistent with Lynd and Lynd (1929)). Stronger for extreme
than for moderates

I For moderates, heterogeneity persists for large group size
I Implication: As connection costs decrease (e.g., email, chats,
sms, online social networking, etc.) =⇒ Homogeneity
increases more for extreme individuals than for moderate ones

I Empirically, deducing preferences directly from individual
actions is problematic =⇒ Important to account for public
goods obtained from friendships
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The End
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