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Why Networks Matter

o 15t Century Florentine Marriages (Padgett and Ansell, 1993)
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Why Networks Matter — Florence

o Why are the Medici (“godfathers of the
Renaissance”) so strong?

O Prior to the 15th century, Florence was
ruled by an oligarchy of elite families

o Notably, the Strozzi had greater wealth
and more seats in the state legislature,
and yet were eclipsed by the Medici



Why Networks Matter — Florence

o Several notable characteristics of the marriage
network (drawn for 1430):

= High degree, number of connected families, but higher only by 1
relative to Strozzi or Guadagni.

= Let P(i,j) denote the number of shortest paths between families i
and j and let P (i,j) the number of these that include k.
Note that the Medici are key in connecting Barbadori and
Guadagni.

= To get a general sense of importance, can look at an average of
this betweeness calculation. Standard measure:

R.(1, J)/P(1, )
i;«tj%i,j} (n-1)(n-2)/2

o Medici — 0.522, Strozzi - 0.103, Guadagni - 0.255.



Why Networks Matter

o Diffusion, e.g., Tetracycline adoption (Coleman, Katz, and

Menzel, 1966) . b
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Why Networks Matter

= Giving behavior (Goeree, McConnell, Mitchell, Tromp,
Yariv, 2009)




1/d Law of Giving
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Why Networks Matter

O

Matching with Network Externalities — dorms and
students, faculty and offices, firms and workers, etc.

Epidemiology — whom to vaccinate, what populations
are more fragile to an epidemic, etc.

Marketing — whom to target for advertizing, how do
products diffuse, etc.

Development — how to design micro-credit programs
utilizing network information.



Why Networks Matter

O

Matching with Network Externalities — dorms and
students, faculty and offices, firms and workers, etc.

Epidemiology — whom to vaccinate, what populations
are more fragile to an epidemic, etc.

Marketing — whom to target for advertizing, how do
products diffuse, etc.

Development — how to design micro-credit programs
utilizing network information.

[[Social = “Social”, agents can stand for individuals,
computers, avatars, etc.]]



Networks have very different structures
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The Structure of Romantic and Sexual Relations at "Jefferson High School"

ole Bearman, Moody, and Stovel's
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Political Blogosphere (Adamic and
Glance, 2005)




Networks have very different structures

0 Depending on which layer we look at

o Consider faculty at a professional school in
the U.S. (Baccara, Imrohoroglu, Wilson,
and Yariv, 2012):
= Institutional
= Social
= Co-authorship



Department

Depariment 1 Department 2

oo o
oYg O O 0 O : ‘,
m_O L= m B R
El ¢ ¢
o0 0 PALPN
<& &
0 o U
.l ”0 ¢ ¢
@
A A ° -
RN N .o o 0
A
A [ ] ([ ]
&;& ® ®

Daparimant 3 Department 4



Research field
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The Big Questions

0 How does the structure of networks
Impact outcomes:

» In different locations within the network and
across different network architectures

= Static and dynamic

o How do networks form to begin with
(given the interactions that occur over
them)



All that in three hours?!

0 Basic notions of networks
o diffusion models for pedestrians
o0 More general games played on networks

o (if time) Basic group formation model



Caveats

o Talks biased toward my own work

0o They are more economically oriented (we care a
lot about welfare, less about complexity)

o You're still welcome to complain and ask
questions!

o A great read: Jackson (2008)



Summarizing Networks

o N={1,...,n} individuals, vertices, nodes, agents,
players
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Summarizing Networks

o N={1,...,,n} individuals, vertices, nodes, agents,
players

O g is (an undirected) network (in {0,1}™"):

1 | # ] connected
i =

0 otherwise

O N.(g) i's neighborhood,
N, (9) ={j|g; =1}

o di(g)=[Ni(g)| i's degree



Examples

O The line
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Examples

O The line

010 L,

-1 01 @—@—0

0 1 0,

o The triangle (special case of a circle...)
3

0 1 1
g=/1 0 1
1l 1 0




Degree Distributions

o P(d) - frequency of degree d nodes
0 Examples:

1. Regular network - P(k)=1, P(d)=0
for all d+k.

2. Complete network - P(n)=1.



Erdos-Renyi (or Poisson) Networks

O

o Erdos and Renyi (1959, 1960, 1961) - some of
the first to discuss random networks.

o Each link is formed with probability p

P(@) = ("7 )pta—pyri

o For large n,



Poisson Network
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“Phase Transitions” in Poisson Networks

O

0 Pick parameters so that only one isolated
node (with degree 0) on average:

e~ (n—Lp — % o pn—1) =Inn)

0 For example, n=50 - p = lniiO) = 0.0798




Poisson Network
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FIGURE 1.7 Frequency distribution of a randomly generated network and the Poisson
approximation for a probability of .08 on each link.



Coauthorships and Poisson
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Poisson random network with the same average degree.




Notre Dame and Poisson
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Scale-free Distributions

— P(d)=cd?, ¢>0(y€[23] often)



Scale-free Distributions

= P(d) =cd™, ¢>0(y €[23] often)

P(2) _ P(20) _
P(1) P(10)

0 Note that .-+ (hence, scale-free)

o Often called power laws



Scale-free Distributions

= P(d) =cd™, ¢>0(y €[23] often)

P(2) _ P(20) _

0 Note that PeD — PG

.-+ (hence, scale-free)

o Often called power laws

o0 Notice that:
logP(d) = log(c) — ylog(d)



Scale-Free and Poisson
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Scale-Free and Poisson
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/Z1pt’s Law — Word Frequency in
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/Zipt’s Law for Cities
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Fiocure 1
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Diffusion on Social Networks

O Literature precedes that of static games
on social networks (though connected)

o Relevant for many applictions:
= Epidemiology (human and technological...)

= Learning of a language (human and
technological..)

= Product marketing
» Transmission of information



1.0

> = -3 i

+
=

Cumalative praportion ef docters who have introduced gamsanym

racalivad 3
Or e
cloloel

s
.r""‘a-'-- &
-
L
i

- ks
racsived 1 i’

ar 2 ehaizes f

m = 5B S

[
i
)
I
&
.-‘l.'

- raceivad

K ny sRSLes

o ':H - 55:’

ra
ra
ra
s
&
| | L 1 ] | F| |
4 & B 10 12 14 i6 AT

Bonths after relasgs date of gasnanym

Tetracycline
Adoption
(Coleman, Katz,
and Menzel, 1966)
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Main Observations

olIn 1962, Everett Rogers compiles 508
diffusion studies in Diffusion of Innovation

0 S-shaped adoption

o Different speeds of adoption for different
degree agents



The Bass (1969) Model

o Ideas from Tarde (1903)

o G(t) - percentage of agents who have adopted by
time t

o m — potential adopters in the population



The Bass (1969) Model

o G(t) - percentage of agents who have adopted by
time t

0o m - potential adopters in the population

G(t—1)

Gt)=G6t—-1)+p(m—G(t—1))+q(m—G(t—1)) —

p — rate of innovation

g — rate of immitation



The Bass (1969) Model

a G(t) - percentage of agents who have adopted by
time t

0o m - potential adopters in the population

G(t—1)
Gt)=G6t—-1)+p(m—G({t—1))+q(m—G(t—1)) —
Individuals who have
not yet adopted




The Bass (1969) Model

a G(t) - percentage of agents who have adopted by
time t

0o m - potential adopters in the population

Gitk=1)

Gt)=G(t—1D)+p(m—-G({t—1))+qm—G(t—1)) —
Individuals who have Fraction of adopters to
not yet adopted imitate



The Bass (1969) Model

o Continuous time version



The Bass (1969) Model

o Continuous time version

o Set m=1, g(t) rate of diffusion

g =(pP+q96O)1-G6Q®))



The Bass (1969) Model

o Continuous time version

o Set m=1, g(t) rate of diffusion
gt) =(p+q96(®)(1-G6®)
o Solve for p>0, G(0)=0:

1 — e~ P+t

G(t) =
(®) 1+ o-+a)t

A



The Bass (1969) Model

o S-shaped adoption

1

G(t)




The Bass (1969) Model

o S-shaped adoption

1

G(t)

O No network effects



The Bass Model — Example 1

Adoption of Answering Machines
1982-1993
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The Bass Model — Example 2

Actual and Fitted Adoption of OverHead Projectors,1960-1970,
m=.961 million,p=.028,q=.311
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40000 -
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The Reed-Frost Model (Bailey, 1975)

0 Underlying network is an Erdos-Renyi
Poisson network, with link probability p

0 Each individual immune with probability «



The Reed-Frost Model (Bailey, 1975)

o Underlying network is an Erdos-Renyi
Poisson network, with link probability p

0 Each individual immune with probability «

0 Question: When would a small fraction of
“sick” individual contaminate a substantial
fraction of society?



The Reed-Frost Model
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The Reed-Frost Model

o A component of (N,g) is a sub-network
(N’,g"), such that ® #N° ¢ N, g’ c g such
that:

= (N’,g") is connected; and

mIfieN andijeg,thenje N andije g’



Size ot Large Component — Poisson

O Suppose p>1/n

0 g — fraction of nodes in the largest
component



Size ot Large Component — Poisson

O Suppose p>1/n

0 g — fraction of nodes in the largest
component

o Contemplate adding a node, large n



Size ot Large Component — Poisson

O Suppose p>1/n

0 q — fraction of nodes in the largest
component

o Contemplate adding a node, large n

o If it is of degree d, chance it is outside:
(1- )"



Size ot Large Component — Poisson

o Probability of degree d is P(d):
1—q=) P+ (1-g)
d



Size ot Large Component — Poisson

o Probability of degree d is P(d):
1—q=) P+ (1-g)
d

o Plugging in the Poisson:

q — 1 J— e_q(n_l)p



Size ot Large Component — Poisson

@ Probability of degree d is P(d):
1-q=) P+ (1-q)°
d

o Plugging in the Poisson:

g=1—e 9-1p

0 d=0 always a solution
o When average degree > 1 (p(n-1)>1), positive

A~N cnliitinn NMN"nhaca Ffrancitinn/’ aft nfn_1\Y—1)\



The Reed-Frost Model
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Back to Reed-Frost

o (1-7)n relevant nodes

o If p(1-7)n<1, no giant component and small
fraction infected will die out

o If p(1-7)n>1, small infection may spread to the
giant component:

q — 1 — e_Q(l-ﬂ.)np



The Reed-Frost Model

g

1 p(1-7)n



The Reed-Frost Model

g

1 p(1l-7)n
o No strategies, no dynamics... Which is next!



(Questions:

o How do choices to invest in education, learn a
language, etc., depend on social network
structure and location within a network?



(Questions:

o How do choices to invest in education, learn a
language, etc., depend on social network
structure and location within a network?

= How does network structure impact behavior and
welfare? Complexity of calculating equilibria?

= How does relative location in a network impact behavior
and welfare?



(Questions:

o How do choices to invest in education, learn a
language, etc., depend on social network
structure and location within a network?

m How does network structure impact behavior and
welfare? Complexity of calculating equilibria?

m How does relative location in a network impact behavior
and welfare?

o How does behavior propagate through network
(important for marketing, epidemiology, etc.)?



Example - Experimentation

O Suppose you gain 1 if anyone experiments, 0
otherwise, but experimentation is costly (grains,
software, etc.)



Example - Experimentation

O Suppose you gain 1 if anyone experiments, 0
otherwise, but experimentation is costly (grains,
software, etc.) EXPERIMENTATION - 1

NO EXPERIMENTATION - 0

o Knowing the network structure




Example - Experimentation

O Suppose you gain 1 if anyone experiments, 0
otherwise, but experimentation is costly (grains,
software, etc.) EXPERIMENTATION - 1

NO EXPERIMENTATION - 0

o Knowing the network structure — multiple stable

states:
® @

N
O




Example — Experimentation (2)

Not knowing the structure



Example — Experimentation (2)

Not knowing the structure

o Probability p of a link between any two agents (Poisson..).
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Not knowing the structure

o Probability p of a link between any two agents.

O Symmetry



Example — Experimentation (2)

Not knowing the structure
o Probability p of a link between any two agents.
O Symmetry

o Probability that a neighbor experiments independent of own
degree (number of neighbors)
= — Higher degree less willing to choose 1

= — Threshold equilibrium: low degrees experiment, high
degrees do not.



Example — Experimentation (2)

Not knowing the structure

O

O

O

Probability p of a link between any two agents.
Symmetry

Probability that a neighbor experiments independent of own
degree (number of neighbors)

m — Higher degree less willing to choose 1

m — Threshold equilibrium: low degrees experiment, high
degrees do not.

Strong dependence on p
= p=0— all choose 1,
= p=1— only one chooses 1.



General Messages

O Information Matters



General Messages

O Information Matters

0 Location Matters

= Monotonicity with respect to degrees
Regarding behavior (complementarities...)
Regarding expected benefits (externalities...)



General Messages

O Information Matters

O Location Matters

m Monotonicity with respect to degrees
o Regarding behavior (complementarities...)
o Regarding expected benefits (externalities...)

0 Network Structure Matters

= Adding links affects behavior monotonically
(complementarities...)

= Increasing heterogeneity has regular impacts.



Challenge

o Complexity of networks

0 Tractable way to study behavior outside of
simple (regular structures)?



Focus on key characteristics:

0 Degree Distribution
= Degree of node = number of neighbors

0 How connected is the network?
= average degree, FOSD shifts.

o How are links distributed across agents?
= variance, skewness, etc.



What we analyze:

o A network describes who neighbors are,
whose actions a player cares about:

o k‘
/ /\‘
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What we analyze:

o A network describes who neighbors are,
whose actions a player cares about:

o Players choose actions (today: in {0,1})



What we analyze:

o A network describes who neighbors are,
whose actions a player cares about:

0; : 0
/ _— \ Q)
\‘/0

o Players choose actions (today: in {0,1})
O Examine

m equilibria

= how play diffuses through the network



Games on Networks

o g is network (in {0,1}™);:

1 | # ] connected
i =

0 otherwise
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o Ni(g) i's neighborhood,
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Games on Networks

O g is network (in {0,1}™n):

{1 i # j connected

9710 otherwise

O N.(g) i's neighborhood,

N, (9) ={j|g; =1}
o di(g)=[Ni(g)| i's degree



Games on Networks

O g is network (in {0,1}™n):

! | # ] connected
i 770 otherwise

O N.(g) i's neighborhood,

N, (9) ={j|g; =1}
o di(g)=[Ni(g)| i's degree

o Each player chooses an action in {0,1}



Payott Structure: (today) Complements

o Payoffs depend only on the number of neighbors
choosing 0 or 1.
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Payott Structure: (today) Complements

o Payoffs depend only on the number of neighbors
choosing O or 1.

o normalize payoff of all neighbors choosing 0 to 0

o v(d,x) - ¢ payoff from choosing 1 if degree is d
and a fraction x of neighbors choose 1
= Increasing in x



Payoftt Structure: (today) Complements

o Payoffs depend only on the number of neighbors
choosing O or 1.

o normalize payoff of all neighbors choosing 0 to 0

o v(d,x) - ¢ payoff from choosing 1 if degree is d
and a fraction x of neighbors choose 1
m Increasing in x

O ¢, distributed according to H



FExamples (payott: v(d,x)-c)

o Average Action: v(d,x)=v(d)x= X
(classic coordination games, choice of technology)

o Total Number: v(d,x)=v(d)x=dx

(learn a new language, need partners to use new good or
technology, need to hear about it to learn)

o Critical Mass: v(d,x)=0 for x up to some M/d and
v(d,x)=1 above M/d

(uprising, voting, ...)

o Decreasing: v(d,x) declining in d

(information aggregation, lower degree correlated with
leaning towards adoption)



Information (covered networks, payotts)

0 Incomplete information

= know only own degree and assume others’
types are governed by degree distribution

= presume no correlation in degree
= Bayesian equilibrium - as function of degree



Information (covered networks, payotts)

O Incomplete information

m know only own degree and assume others’
types are governed by degree distribution

m presume no correlation in degree
m Bayesian equilibrium - as function of degree

o Complete information

= "know g” (or at least know actions in
neighborhood)

= Nash equilibrium



Information (covered networks, payotfs)

O Incomplete information

m know only own degree and assume others’
types are governed by degree distribution

m presume no correlation in degree
m Bayesian equilibrium - as function of degree

o Complete information

m "know g” (or at least know actions in
neighborhood)

m Nash equilibrium
o Intermediate...



(today) Incomplete information case:

o g drawn from some set of networks G such
that:
= degrees of neighbors are independent
= Probability of any node having degree d is p(d)

= probability of given neighbor having degree d is
P(d)=dp(d)/E(d)



(today) Incomplete information case:

o g drawn from some set of networks G such
that:
= degrees of neighbors are independent
= Probability of any node having degree d is p(d)

= probability of given neighbor having degree d is
P(d)=dp(d)/E(d)
p(2)=1/2

/
&

\@ p(1)=1/2



(today) Incomplete information case:

0 g drawn from some set of networks G such
that (assuming large population):
= degrees of neighbors are independent
= Probability of any node having degree d is p(d)

= probability of given neighbor having degree d is
P(d)=dp(d)/E(d)
— Probability of

/ hitting 2 is twice
as high as that

— of hitting 1 —
P(2)=2/3.

@



(today) Incomplete information case:

O g drawn from some set of networks G such
that:
m degrees of neighbors are independent
m Probability of any node having degree d is p(d)

m probability of given neighbor having degree d is
P(d)=dp(d)/E(d)

o type of i is ( di(g), ¢; ); space of types T,



(today) Incomplete information case:

O g drawn from some set of networks G such
that:
m degrees of neighbors are independent
m Probability of any node having degree d is p(d)

m probability of given neighbor having degree d is
P(d)=dp(d)/E(d)

Otype ofiis ( di(g), ¢, ); space of types T,

o strategy: o;: T— A(X)



Equilibrium as a fixed point:

o H(v(d,x)) is the percent of degree d types
adopting action 1 if x is fraction of random
neighbors adopting.

o Equilibrium corresponds to a fixed point:
x = @(x) = 2 P(d) H(v(d,x))
= 2 d p(d) H(v(d,x)) / E[d]



