Diffusion and Strategic Interaction on Social Networks

Leeat Yariv

Summer School in Algorithmic Game Theory, Part1, 8.6.2012

Why Networks Matter

□ 15th Century Florentine Marriages (Padgett and Ansell, 1993)

Why Networks Matter – Florence

- Why are the Medici ("godfathers of the Renaissance") so strong?
- Prior to the 15th century, Florence was ruled by an oligarchy of elite families
- Notably, the Strozzi had greater wealth and more seats in the state legislature, and yet were eclipsed by the Medici

Why Networks Matter – Florence

- Several notable characteristics of the marriage network (drawn for 1430):
 - High degree, number of connected families, but higher only by 1 relative to Strozzi or Guadagni.
 - Let P(i,j) denote the number of shortest paths between families i and j and let $P_k(i,j)$ the number of these that include k.
 - Note that the Medici are key in connecting Barbadori and Guadagni.
 - To get a general sense of importance, can look at an average of this betweeness calculation. Standard measure:

$$\sum_{i \neq j, k \notin \{i, j\}} \frac{P_k(i, j) / P(i, j)}{(n-1)(n-2)/2}$$

Medici – 0.522, Strozzi – 0.103, Guadagni – 0.255.

Why Networks Matter

Diffusion, e.g., Tetracycline adoption (Coleman, Katz, and

Menzel, 1966):

Why Networks Matter

 Giving behavior (Goeree, McConnell, Mitchell, Tromp, Yariv, 2009)

1/d Law of Giving

Why Networks Matter

- Matching with Network Externalities dorms and students, faculty and offices, firms and workers, etc.
- Epidemiology whom to vaccinate, what populations are more fragile to an epidemic, etc.
- Marketing whom to target for advertizing, how do products diffuse, etc.
- Development how to design micro-credit programs utilizing network information.

Why Networks Matter

- Matching with Network Externalities dorms and students, faculty and offices, firms and workers, etc.
- Epidemiology whom to vaccinate, what populations are more fragile to an epidemic, etc.
- Marketing whom to target for advertizing, how do products diffuse, etc.
- Development how to design micro-credit programs utilizing network information.
- [[Social = "Social", agents can stand for individuals, computers, avatars, etc.]]

Networks have very different structures

The Structure of Romantic and Sexual Relations at "Jefferson High School"

Political Blogosphere (Adamic and Glance, 2005)

Networks have very different structures

- Depending on which layer we look at
- Consider faculty at a professional school in the U.S. (Baccara, Imrohoroglu, Wilson, and Yariv, 2012):
 - Institutional
 - Social
 - Co-authorship

Department

Research field

Coauthorships

Friendships

Composite

The Big Questions

- How does the structure of networks impact outcomes:
 - In different locations within the network and across different network architectures
 - Static and dynamic
- How do networks form to begin with (given the interactions that occur over them)

All that in three hours?!

- Basic notions of networks
- diffusion models for pedestrians
- More general games played on networks
- (if time) Basic group formation model

Caveats

- □ Talks biased toward my own work
- They are more economically oriented (we care a lot about welfare, less about complexity)
- You're still welcome to complain and ask questions!
- □ A great read: Jackson (2008)

■ N={1,...,n} individuals, vertices, nodes, agents, players

- N={1,...,n} individuals, vertices, nodes, agents, players
- \square g is (an undirected) network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

- N={1,...,n} individuals, vertices, nodes, agents, players
- \blacksquare g is (an undirected) network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

□ N_i(g) i's neighborhood,

$$N_i(\mathbf{g}) = \{ \mathbf{j} \middle| \mathbf{g}_{ij} = 1 \}$$

- N={1,...,n} individuals, vertices, nodes, agents, players
- \blacksquare g is (an undirected) network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

 \square $N_i(g)$ i's neighborhood,

$$\boldsymbol{N}_{i}(\boldsymbol{g}) = \{\boldsymbol{j} \middle| \boldsymbol{g}_{ij} = 1\}$$

 \Box $d_i(g) = |N_i(g)|$ i's degree

Examples

The line

$$g = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Examples

The line

$$g = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Examples

The line

$$g = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

■ The triangle (special case of a circle...)

$$g = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Degree Distributions

□ P(d) – frequency of degree d nodes

Examples:

1. Regular network – P(k)=1, P(d)=0 for all $d \neq k$.

2. Complete network – P(n)=1.

Erdos-Renyi (or Poisson) Networks

- □ Erdos and Renyi (1959, 1960, 1961) some of the first to discuss random networks.

Each link is formed with probability p

$$P(d) = {\binom{n-1}{d}} p^d (1-p)^{n-1-d}$$

For large n,

Poisson Network

Degree Distribution p=.02

"Phase Transitions" in Poisson Networks

Pick parameters so that only one isolated node (with degree 0) on average:

$$e^{-(n-1)p} = \frac{1}{n} \leftrightarrow p(n-1) = \ln(n)$$

□ For example, $n=50 \rightarrow p = \frac{\ln(50)}{49} = 0.0798$

Poisson Network

FIGURE 1.7 Frequency distribution of a randomly generated network and the Poisson approximation for a probability of .08 on each link.

Coauthorships and Poisson

FIGURE 3.1 Comparison of the degree distributions of a coauthorship network and a Poisson random network with the same average degree.

Notre Dame and Poisson

FIGURE 3.2 Distribution of in-degrees of Notre Dame web site domain from Albert, Jeong, and Barabási [9] compared to a Poisson random network.

Scale-free Distributions

 $P(d) = cd^{-\gamma}, c > 0 (\gamma \in [2,3] \text{ often})$

Scale-free Distributions

$$P(d) = cd^{-\gamma}, c > 0 (\gamma \in [2,3] \text{ often})$$

□ Note that
$$\frac{P(2)}{P(1)} = \frac{P(20)}{P(10)} = \cdots$$
 (hence, scale-free)

Often called power laws

Scale-free Distributions

$$P(d) = cd^{-\gamma}, c > 0 (\gamma \in [2,3] \text{ often})$$

□ Note that
$$\frac{P(2)}{P(1)} = \frac{P(20)}{P(10)} = \cdots$$
 (hence, scale-free)

- Often called power laws
- Notice that:

$$logP(d) = \log(c) - \gamma \log(d)$$

Scale-Free and Poisson

FIGURE 2.8 Comparing a scale-free distribution to a Poisson distribution.

Scale-Free and Poisson

FIGURE 2.9 Comparing a scale-free distribution to a Poisson distribution: log-log plot.

Zipf's Law – Word Frequency in Wikipedia (November 27, 2006)

Zipf's Law for Cities

FIGURE I Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991 Source: Statistical Abstract of the United States [1993].

Diffusion on Social Networks

- Literature precedes that of static games on social networks (though connected)
- Relevant for many applications:
 - Epidemiology (human and technological...)
 - Learning of a language (human and technological..)
 - Product marketing
 - Transmission of information

Tetracycline Adoption(Coleman, Katz, and Menzel, 1966)

Hybrid Corn, 1933-1952 (Griliches, 1957, and Young, 2006)

Main Observations

- In 1962, Everett Rogers compiles 508 diffusion studies in *Diffusion of Innovation*
- S-shaped adoption
- Different speeds of adoption for different degree agents

- □ Ideas from Tarde (1903)
- □ G(t) percentage of agents who have adopted by time t
- m potential adopters in the population

G(t) – percentage of agents who have adopted by time t

m – potential adopters in the population

$$G(t) = G(t-1) + p(m - G(t-1)) + q(m - G(t-1)) \frac{G(t-1)}{m}$$

p - rate of innovation

q - rate of immitation

G(t) – percentage of agents who have adopted by time t

m – potential adopters in the population

$$G(t) = G(t-1) + p \Big(m - G(t-1) \Big) + q (m - G(t-1)) \frac{G(t-1)}{m}$$
 Individuals who have not yet adopted

G(t) – percentage of agents who have adopted by time t

m – potential adopters in the population

Continuous time version

- Continuous time version
- Set m=1, g(t) rate of diffusion

$$g(t) = (p + qG(t))(1 - G(t))$$

Continuous time version

■ Set m=1, g(t) rate of diffusion

$$g(t) = (p + qG(t))(1 - G(t))$$

□ Solve for p>0, G(0)=0:

$$G(t) = \frac{1 - e^{-(p+q)t}}{1 + \frac{q}{n}e^{-(p+q)t}}$$

S-shaped adoption

S-shaped adoption

No network effects

The Bass Model – Example 1

The Bass Model – Example 2

Actual and Fitted Adoption of OverHead Projectors,1960-1970, m=.961 million,p=.028,q=.311

The Reed-Frost Model (Bailey, 1975)

Underlying network is an Erdos-Renyi Poisson network, with link probability p

 \blacksquare Each individual immune with probability π

The Reed-Frost Model (Bailey, 1975)

- Underlying network is an Erdos-Renyi Poisson network, with link probability p
- \blacksquare Each individual immune with probability π
- Question: When would a small fraction of "sick" individual contaminate a substantial fraction of society?

The Reed-Frost Model

The Reed-Frost Model

- A **component** of (N,g) is a sub-network (N',g'), such that $\emptyset \neq N' \subset N$, $g' \subset g$ such that:
 - (N',g') is connected; and
 - If $i \in N'$ and $ij \in g$, then $j \in N'$ and $ij \in g'$

□ Suppose p>1/n

q – fraction of nodes in the largest component

□ Suppose p>1/n

q – fraction of nodes in the largest component

Contemplate adding a node, large n

□ Suppose p>1/n

q – fraction of nodes in the largest component

Contemplate adding a node, large n

If it is of degree d, chance it is outside:

$$(1 - q)^d$$

Probability of degree d is P(d):

$$1 - q = \sum_{d} P(d) * (1 - q)^{d}$$

Probability of degree d is P(d):

$$1 - q = \sum_{d} P(d) * (1 - q)^{d}$$

Plugging in the Poisson:

$$q = 1 - e^{-q(n-1)p}$$

Probability of degree d is P(d):

$$1 - q = \sum_{d} P(d) * (1 - q)^{d}$$

Plugging in the Poisson:

$$q = 1 - e^{-q(n-1)p}$$

- q=0 always a solution
- When average degree > 1 (p(n-1)>1), positive a>0 solution ("phase transition" at p(n-1)=1)

The Reed-Frost Model

Back to Reed-Frost

- \square (1- π)n relevant nodes
- □ If $p(1-\pi)n<1$, no giant component and small fraction infected will die out
- □ If $p(1-\pi)n>1$, small infection may spread to the giant component:

$$q=1-e^{-q(1-\pi)np}$$

The Reed-Frost Model

The Reed-Frost Model

■ No strategies, no dynamics... Which is next!

Questions:

How do choices to invest in education, learn a language, etc., depend on social network structure and location within a network?

Questions:

- How do choices to invest in education, learn a language, etc., depend on social network structure and location within a network?
 - How does network structure impact behavior and welfare? Complexity of calculating equilibria?
 - How does relative location in a network impact behavior and welfare?

Questions:

- How do choices to invest in education, learn a language, etc., depend on social network structure and location within a network?
 - How does network structure impact behavior and welfare? Complexity of calculating equilibria?
 - How does relative location in a network impact behavior and welfare?
- How does behavior propagate through network (important for marketing, epidemiology, etc.)?

Example - Experimentation

Suppose you gain 1 if anyone experiments, 0 otherwise, but experimentation is costly (grains, software, etc.)

Example - Experimentation

Suppose you gain 1 if anyone experiments, 0 otherwise, but experimentation is costly (grains, software, etc.) EXPERIMENTATION – 1
 NO EXPERIMENTATION – 0

Knowing the network structure

Example - Experimentation

■ Suppose you gain 1 if anyone experiments, 0 otherwise, but experimentation is costly (grains, software, etc.) EXPERIMENTATION – 1

NO EXPERIMENTATION – 0

Knowing the network structure – multiple stable

Not knowing the structure

Probability p of a link between any two agents (Poisson..).

- Probability p of a link between any two agents.
- Symmetry

- Probability p of a link between any two agents.
- Symmetry
- Probability that a neighbor experiments independent of own degree (number of neighbors)
 - → Higher degree less willing to choose 1
 - → Threshold equilibrium: low degrees experiment, high degrees do not.

- Probability p of a link between any two agents.
- Symmetry
- Probability that a neighbor experiments independent of own degree (number of neighbors)
 - → Higher degree less willing to choose 1
 - → Threshold equilibrium: low degrees experiment, high degrees do not.
- Strong dependence on p
 - $p=0\rightarrow$ all choose 1,
 - $p=1 \rightarrow$ only one chooses 1.

General Messages

■ Information Matters

General Messages

■ Information Matters

Location Matters

- Monotonicity with respect to degrees
 - Regarding behavior (complementarities...)
 - Regarding expected benefits (externalities...)

General Messages

- Information Matters
- Location Matters
 - Monotonicity with respect to degrees
 - Regarding behavior (complementarities...)
 - Regarding expected benefits (externalities...)

Network Structure Matters

- Adding links affects behavior monotonically (complementarities...)
- Increasing heterogeneity has regular impacts.

Challenge

Complexity of networks

Tractable way to study behavior outside of simple (regular structures)?

Focus on key characteristics:

- Degree Distribution
 - Degree of node = number of neighbors
- How connected is the network?
 - average degree, FOSD shifts.
- How are links distributed across agents?
 - variance, skewness, etc.

What we analyze:

A network describes who neighbors are, whose actions a player cares about:

What we analyze:

A network describes who neighbors are, whose actions a player cares about:

□ Players choose actions (today: in {0,1})

What we analyze:

A network describes who neighbors are, whose actions a player cares about:

- □ Players choose actions (today: in {0,1})
- Examine
 - equilibria
 - how play diffuses through the network

lacksquare g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

□ N_i(g) i's neighborhood,

$$\boldsymbol{N}_{i}(\boldsymbol{g}) = \{\boldsymbol{j} \middle| \boldsymbol{g}_{ij} = 1\}$$

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

 \square $N_i(g)$ i's neighborhood,

$$\boldsymbol{N}_{i}(\boldsymbol{g}) = \{\boldsymbol{j} \middle| \boldsymbol{g}_{ij} = 1\}$$

 \Box $d_i(g) = |N_i(g)|$ i's degree

 \Box g is network (in $\{0,1\}^{n\times n}$):

$$\mathbf{g}_{ij} = \begin{cases} 1 & i \neq j \text{ connected} \\ 0 & \text{otherwise} \end{cases}$$

■ N_i(g) i's neighborhood,

$$N_i(\mathbf{g}) = \{ \mathbf{j} \middle| \mathbf{g}_{ij} = 1 \}$$

- \Box $d_i(g) = |N_i(g)|$ i's degree
- Each player chooses an action in {0,1}

Payoffs depend only on the number of neighbors choosing 0 or 1.

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0
- v(d,x) − c_i payoff from choosing 1 if degree is d and a fraction x of neighbors choose 1
 - Increasing in x

- Payoffs depend only on the number of neighbors choosing 0 or 1.
- normalize payoff of all neighbors choosing 0 to 0
- $\mathbf{v}(d,x) c_i$ payoff from choosing 1 if degree is d and a fraction x of neighbors choose 1
 - Increasing in x
- c_i distributed according to H

Examples (payoff: v(d,x)-c)

- Average Action: v(d,x)=v(d)x=x (classic coordination games, choice of technology)
- □ Total Number: v(d,x)=v(d)x=dx (learn a new language, need partners to use new good or technology, need to hear about it to learn)
- Critical Mass: v(d,x)=0 for x up to some M/d and v(d,x)=1 above M/d (uprising, voting, ...)
- Decreasing: v(d,x) declining in d (information aggregation, lower degree correlated with leaning towards adoption)

Information (covered networks, payoffs)

Incomplete information

- know only own degree and assume others' types are governed by degree distribution
- presume no correlation in degree
- Bayesian equilibrium as function of degree

Information (covered networks, payoffs)

Incomplete information

- know only own degree and assume others' types are governed by degree distribution
- presume no correlation in degree
- Bayesian equilibrium as function of degree
- Complete information
 - "know g" (or at least know actions in neighborhood)
 - Nash equilibrium

Information (covered networks, payoffs)

- Incomplete information
 - know only own degree and assume others' types are governed by degree distribution
 - presume no correlation in degree
 - Bayesian equilibrium as function of degree
- Complete information
 - "know g" (or at least know actions in neighborhood)
 - Nash equilibrium
- Intermediate...

- g drawn from some set of networks G such that:
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)

- g drawn from some set of networks G such that:
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)

- g drawn from some set of networks G such that (assuming large population):
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)

Probability of hitting 2 is twice as high as that of hitting $1 \rightarrow P(2)=2/3$.

- g drawn from some set of networks G such that:
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)
- \square type of i is ($d_i(g)$, c_i); space of types T_i

- g drawn from some set of networks G such that:
 - degrees of neighbors are independent
 - Probability of any node having degree d is p(d)
 - probability of given neighbor having degree d is P(d)=dp(d)/E(d)
- \blacksquare type of i is ($d_i(g)$, c_i); space of types T_i
- □ strategy: $σ_i$: T_i → Δ(X)

Equilibrium as a fixed point:

H(v(d,x)) is the percent of degree d types adopting action 1 if x is fraction of random neighbors adopting.

Equilibrium corresponds to a fixed point:

$$x = \phi(x) = \sum P(d) H(v(d,x))$$
$$= \sum d p(d) H(v(d,x)) / E[d]$$