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Why Networks Matter
 15th Century Florentine Marriages (Padgett and Ansell, 1993)



Why Networks Matter – Florence

 Why are the Medici (“godfathers of the 
Renaissance”) so strong?

 Prior to the 15th century, Florence was 
ruled by an oligarchy of elite families

 Notably, the Strozzi had greater wealth 
and more seats in the state legislature, 
and yet were eclipsed by the Medici



Why Networks Matter – Florence
 Several notable characteristics of the marriage 

network (drawn for 1430):
 High degree, number of connected families, but higher only by 1 

relative to Strozzi or Guadagni.

 Let P(i,j) denote the number of shortest paths between families i
and j and let Pk(i,j) the number of these that include k.
 Note that the Medici are key in connecting Barbadori and 

Guadagni.

 To get a general sense of importance, can look at an average of 
this betweeness calculation. Standard measure:

 Medici – 0.522, Strozzi – 0.103, Guadagni – 0.255.
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Why Networks Matter
 Diffusion, e.g., Tetracycline adoption (Coleman, Katz, and 

Menzel, 1966) :



Why Networks Matter
 Giving behavior (Goeree, McConnell, Mitchell, Tromp, 

Yariv, 2009)



1/d Law of Giving



Why Networks Matter
 Matching with Network Externalities – dorms and 

students, faculty and offices, firms and workers, etc.

 Epidemiology – whom to vaccinate, what populations 
are more fragile to an epidemic, etc.

 Marketing – whom to target for advertizing, how do 
products diffuse, etc.

 Development – how to design micro-credit programs 
utilizing network information.

[[Social = “Social”, agents can stand for individuals, 
computers, avatars, etc.]]
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Networks have very different structures

Girvan and Newman’s
Scientific Collaboration Data



Bearman, Moody, and Stovel’s 
High School Romance Data



Political Blogosphere (Adamic and 
Glance, 2005)



Networks have very different structures
 Depending on which layer we look at

 Consider faculty at a professional school in 
the U.S. (Baccara, Imrohoroglu, Wilson, 
and Yariv, 2012):
 Institutional
 Social
 Co-authorship













The Big Questions
 How does the structure of networks 

impact outcomes:
 In different locations within the network and 

across different network architectures
 Static and dynamic

 How do networks form to begin with 
(given the interactions that occur over 
them)



All that in three hours?!

 Basic notions of networks

 diffusion models for pedestrians

 More general games played on networks

 (if time) Basic group formation model



Caveats

 Talks biased toward my own work

 They are more economically oriented (we care a 
lot about welfare, less about complexity)

 You’re still welcome to complain and ask 
questions!

 A great read: Jackson (2008)



Summarizing Networks
 N={1,…,n} individuals, vertices, nodes, agents, 

players

g is (an undirected) network (in {0,1}nxn):

Ni(g) i’s neighborhood, 

di(g)=|Ni(g)| i’s degree
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 The line


















010
101
010

g



Examples
 The line


















010
101
010

g
1 2 3



Examples
 The line

 The triangle (special case of a circle…)
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Degree Distributions
 P(d) – frequency of degree d nodes

 Examples:

1. Regular network – P(k)=1, P(d)=0   
for all d∫k.

2. Complete network – P(n)=1.



Erdos-Renyi (or Poisson) Networks




Poisson Network



“Phase Transitions” in Poisson Networks




Poisson Network



Coauthorships and Poisson



Notre Dame and Poisson



Scale-free Distributions

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Scale-free Distributions




Scale-Free and Poisson



Scale-Free and Poisson



Zipf’s Law – Word Frequency in 
Wikipedia (November 27, 2006)



Zipf’s Law for Cities



Diffusion on Social Networks
 Literature precedes that of static games 

on social networks (though connected)

 Relevant for many applictions:
 Epidemiology (human and technological…)
 Learning of a language (human and 

technological..)
 Product marketing
 Transmission of information



Tetracycline 
Adoption 
(Coleman, Katz, 
and Menzel, 1966) 



Hybrid Corn, 
1933-1952
(Griliches, 
1957, and 
Young, 2006)



Main Observations

 In 1962, Everett Rogers compiles 508 
diffusion studies in Diffusion of Innovation

 S-shaped adoption

 Different speeds of adoption for different 
degree agents



The Bass (1969) Model
 Ideas from Tarde (1903)

 G(t) – percentage of agents who have adopted by 
time t

 m – potential adopters in the population



The Bass (1969) Model




The Bass (1969) Model


Individuals who have 
not yet adopted 



The Bass (1969) Model


Individuals who have 
not yet adopted 

Fraction of adopters to 
imitate
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The Bass (1969) Model
 S-shaped adoption

t



The Bass (1969) Model
 S-shaped adoption

 No network effects

t



The Bass Model – Example 1
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The Bass Model – Example 2
Actual and Fitted Adoption of OverHead Projectors,1960-1970,

m=.961 million,p=.028,q=.311
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The Reed-Frost Model (Bailey, 1975)

 Underlying network is an Erdos-Renyi
Poisson network, with link probability p

 Each individual immune with probability p

Question: When would a small fraction of 
“sick” individual contaminate a substantial 
fraction of society?
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Size of Large Component – Poisson
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The Reed-Frost Model



Back to Reed-Frost




The Reed-Frost Model
q

p(1-p)n1



The Reed-Frost Model
q

p(1-p)n
 No strategies, no dynamics… Which is next!

1



Questions:

 How do choices to invest in education, learn a 
language, etc., depend on social network 
structure and location within a network?
How does network structure impact behavior and 

welfare?
How does relative position in a network impact 

behavior and welfare?

How does behavior propagate through 
network (important for marketing, 
epidemiology, etc.)?



Questions:

 How do choices to invest in education, learn a 
language, etc., depend on social network 
structure and location within a network?

 How does network structure impact behavior and 
welfare? Complexity of calculating equilibria?

 How does relative location in a network impact behavior 
and welfare?

How does behavior propagate through 
network (important for marketing, 
epidemiology, etc.)?



Questions:

 How do choices to invest in education, learn a 
language, etc., depend on social network 
structure and location within a network?

 How does network structure impact behavior and 
welfare? Complexity of calculating equilibria?

 How does relative location in a network impact behavior 
and welfare?

 How does behavior propagate through network 
(important for marketing, epidemiology, etc.)?
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software, etc.)
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Example – Experimentation (2)
Not knowing the structure
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 Probability that a neighbor experiments independent of own 
degree (number of neighbors)
 → Higher degree less willing to choose 1
 → Threshold equilibrium: low degrees experiment, high 
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Example – Experimentation (2)
Not knowing the structure
 Probability p of a link between any two agents.

 Symmetry

 Probability that a neighbor experiments independent of own 
degree (number of neighbors)
 → Higher degree less willing to choose 1
 → Threshold equilibrium: low degrees experiment, high 

degrees do not. 

 Strong dependence on p
 p=0→ all choose 1, 
 p=1→ only one chooses 1.
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General Messages
 Information Matters

 Location Matters
 Monotonicity with respect to degrees

 Regarding behavior (complementarities…)
 Regarding expected benefits (externalities…)

 Network Structure Matters
 Adding links affects behavior monotonically 

(complementarities…)
 Increasing heterogeneity has regular impacts.



Challenge

 Complexity of networks

 Tractable way to study behavior outside of 
simple (regular structures)?  



Focus on key characteristics:
 Degree Distribution

 Degree of node = number of neighbors

 How connected is the network?
 average degree, FOSD shifts.

 How are links distributed across agents?
 variance, skewness, etc.



What we analyze:

 A network describes who neighbors are,  
whose actions a player cares about:
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What we analyze:

 A network describes who neighbors are,  
whose actions a player cares about:

 Players choose actions (today: in {0,1})
 Examine 

 equilibria
 how play diffuses through the network
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Games on Networks

 g is network (in {0,1}nxn):

 Ni(g) i’s neighborhood, 

 di(g)=|Ni(g)| i’s degree

 Each player chooses an action in {0,1}



 


otherwise0

connected 1 ji
gij

}1{)(  iji gjgN



Payoff Structure:  (today) Complements 
 Payoffs depend only on the number of neighbors 

choosing 0 or 1.
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Payoff Structure:  (today) Complements 
 Payoffs depend only on the number of neighbors 

choosing 0 or 1.

 normalize payoff of all neighbors choosing 0 to 0

 v(d,x) – ci payoff from choosing 1 if degree is d 
and a fraction x of neighbors choose 1
 Increasing in x

 ci distributed according to H



Examples (payoff: v(d,x)-c)

 Average Action:  v(d,x)=v(d)x= x  
(classic coordination games, choice of technology)

 Total Number:  v(d,x)=v(d)x=dx 
(learn a new language, need partners to use new good or 
technology, need to hear about it to learn)  

 Critical Mass:  v(d,x)=0 for x up to some M/d and 
v(d,x)=1 above M/d 
(uprising, voting, …)

 Decreasing:  v(d,x) declining in d
(information aggregation, lower degree correlated with 
leaning towards adoption)



Information (covered networks, payoffs)
 Incomplete information

 know only own degree and assume others’ 
types are governed by degree distribution

 presume no correlation in degree
 Bayesian equilibrium – as function of degree
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Information (covered networks, payoffs)
 Incomplete information

 know only own degree and assume others’ 
types are governed by degree distribution

 presume no correlation in degree
 Bayesian equilibrium – as function of degree

 Complete information
 “know g” (or at least know actions in 

neighborhood)
 Nash equilibrium

 Intermediate...
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that:
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 probability of given neighbor having degree d is 

P(d)=dp(d)/E(d)
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(today) Incomplete information case:

 g drawn from some set of networks G such 
that (assuming large population):
 degrees of neighbors are independent
 Probability of any node having degree d is p(d)
 probability of given neighbor having degree d is 

P(d)=dp(d)/E(d)
2

1

1

Probability of 
hitting 2 is twice 
as high as that 
of hitting 1 → 
P(2)=2/3.
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(today) Incomplete information case:

 g drawn from some set of networks G such 
that:
 degrees of neighbors are independent
 Probability of any node having degree d is p(d)
 probability of given neighbor having degree d is 

P(d)=dp(d)/E(d)

 type of i is ( di(g), ci );  space of types Ti

 strategy:  σi: Ti→ ∆(X)



Equilibrium as a fixed point:

 H(v(d,x)) is the percent of degree d types 
adopting action 1 if x is fraction of random 
neighbors adopting.  

 Equilibrium corresponds to a fixed point:   
x = φ(x) = ∑ P(d) H(v(d,x))

= ∑ d p(d) H(v(d,x)) / E[d]


