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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?
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Mechanism Design

Basic Mechanism Design Question: How should an economic
system be designed so that selfish agent behavior leads to good
outcomes?

Internet Applications: file sharing, reputation systems, web search,
web advertising, email, Internet auctions, congestion control, etc.

General Theme: resource allocation.
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Overview

Part I: Optimal Mechanism Design

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving, uniqueness, and optimizing over BNE.

Part II: Approximation in Mechanism Design

• single-item auctions.

• multi-dimensional auctions.

• prior-free auctions.

• computationally tractable mechanisms.

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
2



Overview

Part I: Optimal Mechanism Design (Chapters 2 & 3)

• single-item auction.

• objectives: social welfare vs. seller profit.

• characterization of Bayes-Nash equilibrium.

• consequences: solving, uniqueness, and optimizing over BNE.

Part II: Approximation in Mechanism Design

• single-item auctions. (Chapter 4)

• multi-dimensional auctions. (Chapter 7)

• prior-free auctions. (Chapters 5 & 6)

• computationally tractable mechanisms. (Chapter 8)
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Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
3



Single-item Auction

Mechanism Design Problem: Single-item Auction

Given:

• one item for sale.

• n bidders (with unknown private values for item, v1, . . . , vn)

• Bidders’ objective: maximize utility = value − price paid.

Design:

• Auction to solicit bids and choose winner and payments.

Possible Auction Objectives:

• Maximize social surplus, i.e., the value of the winner.

• Maximize seller profit, i.e., the payment of the winner.
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Objective 1: maximize social surplus



Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).
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Example Auctions

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

Second-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner the
second-highest bid.

Example Input: b = (2, 6, 4, 1).

Questions:

• what are equilibrium strategies?

• what is equilibrium outcome?

• which has higher surplus in equilibrium?

• which has higher profit in equilibrium?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj .

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Equilibrium Analysis

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

How should bidder i bid?

• Let ti = maxj 6=i bj . ⇐ “critical value”

• If bi > ti, bidder i wins and pays ti; otherwise loses.

Case 1: vi > ti Case 2: vi < ti

U
til

ity

Bid Value

0

vi−ti

ti
vi

U
til

ity

Bid Value

0

vi−ti

ti
vi

Result: Bidder i’s dominant strategy is to bid bi = vi!
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).
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Second-price Auction Conclusion

Second-price Auction

1. Solicit sealed bids. 2. Winner is highest bidder.
3. Charge winner the second-highest bid.

Lemma: [Vickrey ’61] Truthful bidding is dominant strategy in
Second-price Auction.

Corollary: Second-price Auction maximizes social surplus.

• bids = values (from Lemma).

• winner is highest bidder (by definition).

⇒ winner is bidder with highest valuation (optimal social surplus).

What about first-price auction?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?
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Recall First-price Auction

First-price Auction

1. Solicit sealed bids.

2. Winner is highest bidder.

3. Charge winner their bid.

How would you bid?

Note: first-price auction has no DSE.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2

0 1
0
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2

0 1
0

1

• E[g(v)] =
∫ 1

0
g(v) dv
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2

0 1
0

1

• E[g(v)] =
∫ 1

0
g(v) dv

0 1
0

1
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2

0 1
0

1

• E[g(v)] =
∫ 1

0
g(v) dv

0 1
0

1

Order Statistics: in expectation, uniform random variables evenly
divide interval.
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Review: Uniform Distributions

Uniform Distribution: draw value v uniformly from the interval [0, 1].

Cumulative Distribution Function: F (z) = Pr[v ≤ z] = z.

Probability Density Function: f(z) = 1
dz

Pr[v ≤ z] = 1.

Expectation:

• E[v] =
∫ 1

0
v dv = 1/2

0 1
0

1

• E[g(v)] =
∫ 1

0
g(v) dv

0 1
0

1

Order Statistics: in expectation, uniform random variables evenly
divide interval.

0 1
E[v2] E[v1]

6 6
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium
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First-price Auction Equilibrium Analysis

Example: two bidders (you and me), uniform values.

• Suppose I bid half my value.

• How should you bid?

• What’s your expected utility with value v and bid b?

E[utility(v, b)] = (v − b) × Pr[you win]
︸ ︷︷ ︸

Pr[my bid ≤ b] = Pr
h

1
2

my value ≤ b

i

= Pr[my value ≤ 2b] = 2b

= (v − b) × 2b

= 2vb − 2b2

• to maximize, take derivative d
db

and set to zero, solve

• optimal to bid b = v/2 (bid half your value!)

Conclusion 1: bidding “half of value” is equilibrium
Conclusion 2: bidder with highest value wins
Conclusion 3: first-price auction maximizes social surplus!
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

Notation:

• Fi(z) = Pr[vi ≤ z] is cumulative distribution function,
(e.g., Fi(z) = z for uniform distribution)

• fi(z) = dFi(z)
dz

is probability density function,

(e.g., fi(z) = 1 for uniform distribution)
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Bayes-Nash equilibrium

Defn: a strategy maps value to bid, i.e., bi = si(vi).

Defn: the common prior assumption: bidders’ values are drawn from a
known distribution, i.e., vi ∼ Fi.

Notation:

• Fi(z) = Pr[vi ≤ z] is cumulative distribution function,
(e.g., Fi(z) = z for uniform distribution)

• fi(z) = dFi(z)
dz

is probability density function,

(e.g., fi(z) = 1 for uniform distribution)

Definition: a strategy profile is in Bayes-Nash Equilibrium (BNE) if for
all i, si(vi) is best response when others play sj(vj) and vj ∼ Fj .
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.
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Surplus Maximization Conclusions

Conclusions:

• second-price auction maximizes surplus in DSE regardless of
distribution.

• first-price auction maximize surplus in BNE for i.i.d. distributions.

Surprising Result: a single auction is optimal for any distribution.

Questions?

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
12



Objective 2: maximize seller profit

(other objectives are similar)



An example

Example Scenario: two bidders, uniform values
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1• Sort values.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2]
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
14



An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.
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An example

Example Scenario: two bidders, uniform values

What is profit of second-price auction?

• draw values from unit interval.

0 1v2 ≤ v1
6 6• Sort values.

• In expectation, values evenly divide unit interval.

• E[Profit] = E[v2] = 1/3.

What is profit of first-price auction?

• E[Profit] = E[v1] /2 = 1/3.

Surprising Result: second-price and first-price auctions have same
expected profit.

Can we get more profit?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2

Case 2: v1 ≥ v2 ≥ 1
2

Case 3: v1 ≥ 1
2 > v2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.

What is profit of Second-price with reserve 1
2 on two bidders U [0, 1]?

• draw values from unit interval.

• Sort values, v1 ≥ v2

Case Analysis: Pr [Case i] E[Profit]

Case 1: 1
2 > v1 ≥ v2 1/4

Case 2: v1 ≥ v2 ≥ 1
2 1/4

Case 3: v1 ≥ 1
2 > v2 1/2
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Second-price with reserve price

Second-price Auction with reserve r

0. Insert seller-bid at r. 1. Solicit bids. 2. Winner is
highest bidder. 3. Charge 2nd-highest bid.

Lemma: Second-price with reserve r has truthful DSE.
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2 on two bidders U [0, 1]?
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Profit Maximization Observations

Observations:

• pretending to value the good increases seller profit.

• optimal profit depends on distribution.
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Profit Maximization Observations

Observations:

• pretending to value the good increases seller profit.

• optimal profit depends on distribution.

Questions?
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Bayes-Nash Equilibrium Characterization and Consequences

• solving for BNE

• uniqueness of BNE

• optimizing over BNE



Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).
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Notation

Notation:

• x is an allocation, xi the allocation for i.

• x(v) is BNE allocation of mech. on valuations v.

• v i = (v1, . . . , vi−1, ?, vi+1, . . . , vn).

• xi(vi) = Ev−i
[xi(vi,v−i)] .

(Agent i’s interim prob. of allocation with v−i from F−i)

Analogously, define p, p(v), and pi(vi) for payments.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.
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Characterization of BNE

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Payment

vi

xi(vi)

vi

xi(vi)

Surplus Utility

vi

xi(vi)

Consequence: (revenue equivalence) in BNE, auctions with same
outcome have same revenue (e.g., first and second-price auctions)
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Questions?



Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?
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⇒ agents ranked by value)

⇒ same outcome as second-price auction.

⇒ same expected payments as second-price auction.
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2. What are equilibrium strategies?

• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)
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Solving for BNE

Solving for equilbrium:

1. What happens in first-price auction equilibrium?

Guess: higher values bid more

⇒ agents ranked by value)

⇒ same outcome as second-price auction.

⇒ same expected payments as second-price auction.

2. What are equilibrium strategies?

• p(v) = Pr[v wins] × b(v) (because first-price)

• p(v) = E[expected second-price payment | v] (by rev. equiv.)

p(v) = Pr[v wins] × E[second highest value | v wins]

⇒ b(v) = E[second highest value | v wins]
(e.g., for two uniform bidders: b(v) = v/2.)

3. Verify guess and BNE: b(v) continuous, strictly increasing,
symmetric.
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Questions?



Uniqueness of BNE

Non-essential Assumption: bid functions are continuous and strictly
increasing.
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Uniqueness of BNE

Non-essential Assumption: bid functions are continuous and strictly
increasing.

Thm: 2-player, i.i.d., continuous, first-price auctions with a random
(unknown) reserve have no asymmetric equilibrium.
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Uniqueness of BNE
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increasing.
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Cor: n-player, i.i.d., continuous, first-price auctions have no
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Uniqueness of BNE

Non-essential Assumption: bid functions are continuous and strictly
increasing.

Thm: 2-player, i.i.d., continuous, first-price auctions with a random
(unknown) reserve have no asymmetric equilibrium.

Cor: n-player, i.i.d., continuous, first-price auctions have no
asymmetric equilibria.

Proof of Corollary:

• player 1 & 2 face random reserve “max(b3, . . . , bn)”

• by theorem, their bid function is symmetric.

• same for player 1 and i.

• so all bid functions are symmetric.
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Allocation Dominance

Claim 0: at v if b1(v) > b2(v) then x1(v) > x2(v)
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Bid Functions

v

b1(v)
b2(v)
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b1(v)
b2(v)

• x1(v) = Pr[b1(v) beats random reserve] × F (v′′)
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• x1(v) = Pr[b1(v) beats random reserve] × F (v′′)

• x2(v) = Pr[b2(v) beats random reserve] × F (v′)

• both terms are strictly bigger for 1 than 2.
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Allocation Dominance

Claim 0: at v if b1(v) > b2(v) then x1(v) > x2(v),
and if b1(v) = b2(v) then x1(v) = x2(v).

Bid Functions

v′ v′′v

b1(v)
b2(v)

• x1(v) = Pr[b1(v) beats random reserve] × F (v′′)

• x2(v) = Pr[b2(v) beats random reserve] × F (v′)

• both terms are strictly bigger for 1 than 2.
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Proof of Theorem

Claim 1: at v if b1(v) = b2(v) then u1(v) = u2(v).
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Proof of Theorem

Claim 1: at v if b1(v) = b2(v) then u1(v) = u2(v).

• x1(v) = x2(v) (Claim 0)

• p1(v) = b1(v)x1(v) (first-price)
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• assume b1(v) > b2(v) on v ∈ (v′, v′′)
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APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
25



Proof of Theorem

Claim 1: at v if b1(v) = b2(v) then u1(v) = u2(v).

• x1(v) = x2(v) (Claim 0)

• p1(v) = b1(v)x1(v) = b2(v)x2(v) = p2(v) (first-price)

• u1(v) = u2(v) (since u(v) = vx(v) − p(v))

Proof of Theorem:

• assume b1(v) > b2(v) on v ∈ (v′, v′′)

Bid Functions

v′ v′′

b1(v)

b2(v)• then x1(v) > x2(v) on v ∈ (v′, v′′)

• so u1(v
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′) =
∫ v′′

v′ x1(z)dz
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v′ v′′

b1(v)

b2(v)• then x1(v) > x2(v) on v ∈ (v′, v′′)

• so u1(v
′′) − u1(v

′) =
∫ v′′

v′ x1(z)dz

>
∫ v′′

v′ x2(z)dz = u2(v
′′) − u2(v

′).

• but u1(v
′′) − u1(v

′) = u2(v
′′) − u2(v

′) by Claim 1.
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Questions?



Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.
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1−Fi(vi)

fi(vi)
.

Lemma: [Myerson 81] In BNE, E[pi(vi)] = E[φi(vi)xi(vi)]
General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

⇒ winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.
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⇒ winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.

Defn: distribution Fi is regular if φi(·) is monotone.

Thm: [Myerson 81] If F is regular, optimal auction is to sell item to
bidder with highest positive virtual valuation.
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Optimizing BNE

Defn: virtual value for i is φi(vi) = vi −
1−Fi(vi)

fi(vi)
.

Lemma: [Myerson 81] In BNE, E[pi(vi)] = E[φi(vi)xi(vi)]
General Approach:

• optimize revenue without incentive constraints (i.e., monotonicity).

⇒ winner is agent with highest positive virtual value.

• check to see if incentive constraints are satisfied.

⇒ if φi(·) is monotone then mechanism is monotone.

Defn: distribution Fi is regular if φi(·) is monotone.

Thm: [Myerson 81] If F is regular, optimal auction is to sell item to
bidder with highest positive virtual valuation.

Proof: expected virtual valuation of winner = expected payment.
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Proof of Lemma

Recall Lemma: In BNE, E[pi(vi)] = E
[(

vi −
1−Fi(vi)

fi(vi)

)

xi(vi)
]

.

Proof Sketch:

• Use characterization: pi(vi) = vixi(vi) −
∫ vi

0
xi(v)dv.

• Use definition of expectation (integrate payment × density).

• Swap order of integration.

• Simplify.
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.
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highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.
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−1(0)).
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.

• So, vi ≥ max(vj , φ
−1(0)).

• So, “critical value” = payment = max(vj , φ
−1(0))

• What is this auction? second-price auction with reserve φ−1(0)!
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Interpretation

Recall Thm: If F is regular, optimal auction is to sell item to bidder with
highest positive virtual valuation.

What does this mean in i.i.d. case?

• Winner i satisfies φi(vi) ≥ max(φj(vj), 0)

• I.i.d. implies φi = φj = φ.

• So, vi ≥ max(vj , φ
−1(0)).

• So, “critical value” = payment = max(vj , φ
−1(0))

• What is this auction? second-price auction with reserve φ−1(0)!

What is optimal single-item auction for U [0, 1]?
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.
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Optimal Auction for U [0, 1]

Optimal auction for U [0, 1]:

• F (vi) = vi.

• f(vi) = 1.

• So, φ(vi) = vi −
1−F (vi)

f(vi)
= 2vi − 1.

• So, φ−1(0) = 1/2.

• So, optimal auction is Second-price Auction with reserve 1/2!
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Optimal Mechanisms Conclusions

Conclusions:

• expected virtual value = expected revenue

• optimal mechanism maximizes virtual surplus.

• optimal auction depends on distribution.

• i.i.d., regular distributions: second-price with reserve is optimal.

• theory is “descriptive”.

Questions?
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Bayes-Nash Equilibrium Characterization Proof



Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:

1.=⇒ BNE ⇐ M & PI

2. BNE ⇒ M

3. BNE ⇒ PI
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BNE ⇐ M & PI

Claim: BNE ⇐ M & PI
Case 1: mimicking z > vi
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BNE ⇐ M & PI

Claim: BNE ⇐ M & PI
Case 1: mimicking z > vi

Defn: ui(vi, z) = vixi(z) − pi(z)
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Claim: BNE ⇐ M & PI
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Defn: ui(vi, z) = vixi(z) − pi(z)
Defn: loss = ui(vi, vi) − ui(vi, z).
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BNE ⇐ M & PI

Claim: BNE ⇐ M & PI
Case 1: mimicking z > vi

Defn: ui(vi, z) = vixi(z) − pi(z)
Defn: loss = ui(vi, vi) − ui(vi, z).
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BNE ⇐ M & PI

Claim: BNE ⇐ M & PI
Case 1: mimicking z > vi

Defn: ui(vi, z) = vixi(z) − pi(z)
Defn: loss = ui(vi, vi) − ui(vi, z).

loss

vi z

xi(z)
xi(vi)

vixi(vi)
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xi(vi)
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xi(vi)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
35



BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)

vixi(vi)

vi

xi(vi)

pi(vi)

vi

xi(vi)

ui(vi, vi)
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xi(vi)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)
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BNE ⇐ M & PI (cont)

Claim: BNE ⇐ M & PI
Case 2: mimicking z < vi

Recall: loss = ui(vi, vi) − ui(vi, z).
Recall: ui(vi, z) = vixi(z) − pi(z)

loss
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xi(z)
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Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:

1. BNE ⇐ M & PI

2.=⇒ BNE ⇒ M

3. BNE ⇒ PI
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BNE ⇒ M

Claim: BNE ⇒ M.
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BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

APPROX. MECH. DESIGN – AUGUST 8 AND 10, 2012
37



BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)
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BNE ⇒ M

Claim: BNE ⇒ M.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:

z′′xi(z
′′) − pi(z

′′) ≥ z′′xi(z
′) − pi(z

′)

z′xi(z
′) − pi(z

′) ≥ z′xi(z
′′) − pi(z

′′)

• Add and cancel payments:

z′′xi(z
′′) + z′xi(z

′) ≥ z′′xi(z
′) + z′xi(z

′′)

• Regroup:

(z′′ − z′)(xi(z
′′) − xi(z

′)) ≥ 0

• So xi(z) is monotone:

z′′ − z′ > 0 ⇒ x(z′′) ≥ x(z′)
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Proof Overview

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Proof Overview:
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2. BNE ⇒ M

3.=⇒ BNE ⇒ PI
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BNE ⇒ PI

Claim: BNE ⇒ PI.
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)
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′) ≥ z′xi(z
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BNE ⇒ PI

Claim: BNE ⇒ PI.

• BNE ⇒ ui(vi, vi) ≥ ui(vi, z)

• Take vi = z′ and z = z′′ and vice versa:
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Characterization Conclusion

Thm: a mechanism and strategy profile is in BNE iff

1. monotonicity (M): xi(vi) is monotone in vi.

2. payment identity (PI): pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0).

and usually pi(0) = 0.

Questions?
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Research Directions

Research Directions:

• are there simple mechanisms that are approximately optimal?
(e.g., price of anarchy or price of stability)

• is the optimal mechanism tractible to compute (even if it is
complex)?

• what are optimal auctions for multi-dimensional agent preferences?

• what are the optimal auctions for non-linear agent preferences,
e.g., from budgets or risk-aversion?

• are there good mechanisms that are less dependent on
distributional assumptions?
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BNE and Auction Theory Homework

1. For two agents with values U [0, 1] and U [0, 2], respectively:

(a) show that the first-price auction is not socially optimal in BNE.

(b) give an auction with “pay your bid if you win” semantics that is.

2. What is the virtual value function for an agent with value U [0, 2]?

3. What is revenue optimal single-item auction for:

(a) two agents with values U [0, 2]? n agents?

(b) two agents with values U [a, b]?

(c) two values U [0, 1] and U [0, 2], respectively?

4. For n agents with values U [0, 1] and a public good, i.e., where
either all or none of the agents can be served,

(a) What is the revenue optimal auction?

(b) What is the expected revenue of the optimal auction?
(use big-oh notation)

http://www.eecs.northwestern.edu/˜hartline/amd.pdf
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