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cost and surplus sharing

full responsibility for output demands (or input contributions) xi; i 2 N

externalities in production ! C(xi; i 2 N) cost (or surplus) to share

function C is known to system designer

fair division determined by counterfactuals = costs at alternative demand

pro�les

examples: connectivity demands (mcst, edge cover, vertex cover), exploit-

ing a commons



goal #1: axiomatic analysis of fairness

! realistic for inelastic demands (no private information)

well developed for:

� binary demands: xi 2 f0; 1g ! fN � S ! c(S)g TU-cooperative
game

� one dimensional demands: xi 2 N or R+; C(
P
N xi) or C(xi; i 2 N),

monotone

! here we discuss only the former (surveys for the latter: [29], [18])



we can extract from most problems the canonical Stand Alone TU game:

c(S) = C(xi; i 2 S; 0; j 2 N�S)

and can ignore any other information to derive cost shares

this reductionist approach is hard to justify when other info is available



goal #2: e�cient usage of the \commons" C

key simplifying assumption: preferences quasilinear in money $ utility

measures willingness to pay

) e�ciency means maximizing total utility, and performing arbitrary cash

transfers

) e�cient surplus (or social cost, [26], see below) can be compared to

surplus at equilibrium outcome of the mechanism

! ordinal preferences preclude such cardinal measurements



private information on utilities) elicited by playing a well designed mech-

anism

equilibrium of mechanism should

! divide cost responsibilities fairly

! achieve e�cient or near-e�cient outcome



two closely related forms of mechanisms:

� demand game: agent i sends demand, mechanism returns cost share

� direct revelation mechanism: agent i reports utility, mechanism returns
allocation = output and cost share

! a demand game with a single equilibrium de�nes a revelation mechanism

! under Consumer Sovereignty, a strategyproof (SP) mechanism gener-

ates a cost sharing rule, hence a demand game



Group Strateyproofness, and Weak Group Strateyproofness are within reach

simple WGSP mechanism: agents pay their incremental costs along a �xed

priority ordering

) the Random Priority mechanism (RP) is fair and universally SP (no

restriction on risk attitude)

how ine�cient is RP?

what SP, GSP, or WGSP mechanisms are more fair ?

! some partial answers to both questions



we discuss fairness issues in section 1, incentives and mechanism design in
sections 2,3,4

1 TU cooperative games

elementary surveys: [1], [14]

(N; v)

N 3 i: agents, jN j = n

v : 2N�? 3 S ! v(S) 2 R+ the value function

a.k.a. the Stand Alone cost (or surplus) of coalition S



! individual property rights determine Stand Alone surplus/cost opportu-

nities for all coalitions (subsets of agents)

real property rights lead to core stable outcomes, must be curtailed if the

core is empty

virtual property rights de�ne the Stand Alone tests (individual and coali-

tional), competing with other fairness requirements



in the applications the virtual interpretation dominates

! in submodular cost sharing, the SA cost of serving S only is an upper

bound derived from real property rights of S, or the virtual right of refusing

to subsidize N�S

! in supermodular cost sharing, the SA cost of serving S only is a lower

bound derived from the virtual right of sole access to the commons



important properties of a game (N; v)

monotonicity : S � S0 ) v(S) � v(S0)

super/sub-additivity : S \ S0 = ?) v(S) + v(S0) � v(S [ S0) (resp. �)

super/sub-modularity : v(S) + v(S0) � v(S [ S0) + v(S \ S0) (resp. �)



allocation: a division x of v(N) among N

x 2 RN and xN = v(N)

� when v is superadditive, allocation x meets the upper -Stand Alone
test (SAt), if xi � v(fig) for all i; it is in the upper-Stand Alone Core
(SAC): if xS � v(S) for all S

� when v is subadditive, allocation x meets the lower-Stand Alone test
(SAt), if xi � v(fig) for all i; it is in the lower-Stand Alone Core
(SAC): if xS � v(S) for all S



alternative expression of the upper-SAC

xS � v(N)� v(N�S) for all S

the share of S not larger than its \best" marginal contribution, after N�S

ditto for the lower-SAC in cost terminology

xS � c(N)� c(N�S) for all S

cost charged to S is at least its \best" marginal cost, afterN�S; otherwise
N�S subsidizes S



the lower-SACore (resp. upper-SACore) may be empty when v is superad-

ditive (resp. subadditive)



solution ' (aka value): selects an allocation for any game

(N; v)! '(N; v) = x

properties of the solution '

Stand Alone test (SAt): '(N; v) meets the lower-SAtest whenever v is

superadditive, and the upper-SAtest when v is subadditive

Stand Alone Core (SAC): '(N; v) is in the lower-SACore(N; v) or in the

upper-SACore(N; v) whenever either one is non empty



Coalitional Monotonicity (CM):

fv(S0) < v0(S0) and v(S) = v0(S) for all S 6= S0g ) xi � x0i for all i 2 S0

Proposition ([29]): SAC and CM are not compatible

proof by a simple counterexample with �ve agents

incentive interpretation: for any solution, in some game some coalition

can object by standing alone, or some player bene�ts by sabotaging an

innovation



themarginal contribution allocation for an ordering i1; i2; � � � , of the agents:

xi1 = v(fi1g); xi2 = v(fi1; i2g � v(fi1g); � � �

the Shapley value is the average (expectation) of all marginal contribution

vectors

xi =
X

0�s�n�1

s!(n� s� 1)!
n!

X
S�N�i;jSj=s

fv(S [ fig)� v(S)g



Shapley characterized his solution by the combination of Anonymity, Ad-

ditivity in costs, and the Dummy axiom

many alternative characterizations followed, vindicating the star status of

this solution for TU cooperative games



! the Shapley value meets the SAtest and CM, but not the SACore in

general

however

Proposition: if v is super/submodular, the SACore is the convex hull of the

marginal contribution vectors (a characteristic property of super/submodularity)

Corollary if v is super/submodular the Shapley value is the \center" of

the SACore



Proposition: if v is super/submodular, the SACore admits a Lorenz dom-

inant selection, called the Dutta Ray solution ([7]).

for this class of games, the DuttaRay solution is "welfarist under core

constraints"

an important solution when the SACore expresses feasibility constraints



�x a game (N; v) and a solution ' de�ned for all subgames (S; vS): S � N
and vS(T ) = v(T ) for all T � S

Population Monotonicity (PM+) (resp. PM�):

fS � N�j and i 2 Sg ) 'i(S; v
S) � 'i(S [ fjg; vS[fjg) (resp. � )

PM+ means that adding a new agent increases (weakly) the shares of

existing ones; PM� means it decreases them (weakly)

both properties are of central interest in strategic cost sharing



Proposition ([28], [7]): the Shapley value as well as the Dutta Ray solu-

tions are PM+ (resp. PM�) in supermodular (resp. submodular) games



1.1 Application 1: Connectivity games

recall: inelastic binary demands

1.1.1 connections on a �xed tree

the simplest case

tree �, nodes V

each agent i needs to connect every pair v; v0 in a subset of nodes Ai � V

cost of edge e is ce ; additive



the subset Bi of edges necessary to serve agent i is well de�ned

Stand Alone costs: c(S) =
P
e2[SBi ce

! submodular

the Shapley value divides equally each ce between all agents i who need e:

e 2 Bi

example: airport landing fees



1.1.2 minimal cost spanning tree (mcst)

each agent i needs to connect one node vi to the source ! (a special node)

all non-source nodes are occupied

! the mc (minimal cost, e�cient) tree is easy to compute: Prim's and

Kruskal's algorithms



Stand Alone cost (public access to all edges): c(S) is cheapest cost of

connecting all vi; i 2 S, to the source, possibly going through vertices

occupied by N�S

! not easy to compute (Steiner nodes)

the SA game has a non empty core, but is not supermodular

proof : the Bird solution ([2]) is in the core: each agent pays his down-

stream edge on a mcst



the Bird solution is not a fair division of costs

� discontinuous in costs

� not cost monotonic (c � c0 ) x � x0)

� not population monotonic (xj(N�i) � xj(N))



the Shapley value of the SA game is continuous in costs

! but not in the core

! nor cost monotonic

! nor population monotonic



the irreductible cost c� obtains by the largest cost reduction (c� � c)

preserving the e�cient cost

c�e = min

(e)

f max
e02
(e)

ce0g

where 
(e) is the set of paths connecting the end-nodes of e

! the c�-SA game is submodular

its Shapley value is called the folk solution ([3], [4], [6], [8], [24])



! the folk solution is easy to compute ([3])

�x i 2 N and order the n� 1 costs c�ij; j 2 N�i, increasingly


1 = c
�
ij1
� 
2 = c�ij2 � � � � � 
n�1 = c

�
ijn�1

xi =
1

n
c�i! +

n�1X
k=1

1

k(k + 1)
minf
k; c�i!g

! the folk solution is a continuous core selection

! it is cost and population monotonic



Theorem: the folk solution is the only symmetric selection of the SA core

satisfying piecewise linearity: cost shares are additive in edge costs ce as

long as the relative ordering of the edge costs does not change



1.1.3 minimal cost Steiner tree

same as mcst except that not all nodes are occupied by an agent

) the computation of the e�cient cost (and, as before, coalitional SA

costs) is hard, can only be approximated

easy 2-approximation

! the SACore may be empty ([27])

there is no single largest cost reduction preserving the e�cient cost

open question: develop the axiomatics of a fair solution in the approxima-

tion world



1.1.4 a general problem

sharing public items

A 3 a! ca

N 3 i! Ai � 2A

agent i is served if at least one subset of items Ai 2 Ai is provided

c(S) = minfcBj8i 9Ai 2 Ai : Ai � Bg

examples: multi-connectivity, connectivity in �xed graphs with cycles, edge

cover, set cover, vertex cover,� � �



the SA Core may be empty

the SACore may be too generous to a 
exible agent:

A = fa; bg; N = f1; 2; 3g;A1 = ffagg;A2 = ffbgg;A3 = ffag; fbgg

! in the SA core agent 3 pays nothing:

x1 + x3 � c(f1; 3g) = ca ) x2 � cb; similarly x1 � ca

open question: develop an (or several) axiomatically fair division rule(s)

for the public items problem



1.2 Application 2: Division of manna with cash transfers

N 3 i: agents, jN j = n

! 2 RK+ : resources to divide in n shares zi (divisible commodities)

agent i's utility is quasi-linear: ui(z
i) + ti

ui is continuous and monotone

ti is a cash transfer to i

feasible allocations:
P
N z

i = ! and
P
N t

i = 0



e�cient allocations: maximize agregate utility

v(N;!) = maxfPN ui(zi)jPN zi = !g
division rule: (N;!; ui)! (zi; ti; i 2 N)! Ui

canonical examples: adapt CEEI and !-EE



! new fairness test: an upper bound on welfare

upper -SACore (u-SAC): US � v(S; !) for all S � N

right to consume rather than right to extract surplus

! always feasible (no convexity needed): "utilitarian" solution



u-SAC is incompatible with No Envy:

K = 1; ! = 1; u1(z) = 5z; u2(z) = 4z; u3(z) = z

EFF \ NE: z1 = 1; t2 = t3 = t; t � 4� 2t ) U3 = t � 4
3 > v(f3g; !)

! fails also for !-EE

K = 1; ! = 1; u1(z) = 4z; u2(z) = u3(z) = z

!-EE: U1 = 4�; U2 = U3 = � ) � = 2
3 ) U1;2 =

4
3 > v(f1; 2g; !)



divisible goods and concave domain: ui concave for all i

ULB: Ui � ui(1n!); weakULB: Ui �
1
nui(!)

impossibility results:

� EFF \ NE \ u-SAC =?

� EFF \ weakULB \ u-SAC =?

� EFF \ RM \ u-SAC =?

� EFF \ PM =?

note: PM strengthens u-SAC



subdomain of the concave domain:

substitutable goods: @2ui
@zik@z

i
k

� 0 for all 1 � k; k0 � K

Theorem ([15]): under substitutability, the Shapley value of the SA game

meets u-SAC, ULB, RM, and PM



1.3 Application 3: assignment with money

! indivisible version of the divisible manna problem

N 3 i: agents, jN j = n

A 3 a: indivisible objects to assign among agents

assignment: N 3 i! a(i) 2 A [ f?g, one-to-one in A

agent i wants at most one object, utility uia � 0

cash transfers:
P
N t

i = 0



e�cient assignment a�: v(N) =
P
N uia�(i) = maxa

P
N uia(i)

unanimity utility una(ui; A) =
1
nmaxa

P
j2N uia(j)

ULB: Ui � una(ui; A)

other axioms: NE, RM, u-SAC, PM: identical de�nitions



CEEI: �nd a price p such that uia�(i) � pa�(i) � uia � pa for all i and a

then Ui = uia�(i) � pa�(i) + 1
n

P
N pa�(i)

! an allocation is non envious if and only if it is a CEEI allocation

! all such allocations meet the ULB

all selections fail RM, PM



!-EE must be adapted to �t the ULB:

Ui =
una(ui;A)P
j2N una(uj;A)

v(N)

neither RM nor PM



all the impossibility results for divisible manna still valid

the (adjusted) substitutability condition for divisible manna holds true

) the Shapley value meets u-SAC, ULB, RM, and PM

example: one good, u1 � u2 � � � � � un

CEEI: agent 1 pays t; u2n � t �
u1
n to everyone else

Shapley: Un =
un
n ; Un�1 =

un
n +

un�1�un
n�1 ; � � � ; U1 =

P1
n
uj�uj+1

j



2 Production games: supermodular costs

general model of the commons with elastic demands

utility ui(xi): willingness to pay for allocation xi

cost function C(x)

e�ciency: to maximize agregate surplus
P
N ui(xi)� C(

P
N xi)

Stand Alone surplus: maxfPS ui(xi)� C(PS xi)g
subadditive but not necessarily submodular



2.1 binary demands, symmetric imc costs

each agent wants (at most) one unit : example scheduling

1-dimensional \type": willingness to pay u1 � u2 � � � �

all units are identical "service"; marginal cost increases: c1 � c2 � � � �

! the SA surplus game is submodular

(not true for multi-units demands)

we compare two simple demand games/mechanisms



the Average Cost (AC) mechanism

each agent chooses in or out; if q agents are \in"

Ui = ui �
C(q)

q
if i is in; Ui = 0 if i is out

demand function: d(p) = jfijui � pgj

equilibrium quantity of the AC game: qac solves d(AC(q)) = q

) overproduction: qe < qac



normative properties in equilibrium

! a Nash equilibrium allocation can generate Envy

! the demand game may have a strong Battle of the Sexes 
avor

! not SP except in a limit sense



the Random Priority (RP) mechanism

law of large numbers ) computations easy in the continuous limit case,

e.g., RP,PS

assume agents maximize their expected utility



Nash equilibrium quantity: qrp solvesZ qrp
0

1

d(C0(t))
dt = 1 and C0(qrp) � p = d�1(0); or C0(qrp) = p

! overproduction at most 100%: qe < qrp � 2qe (for any imc C)



normative properties in equilibrium

! each agent p � C0(0) gets positive surplus (service with some proba-
bility), while in AC all agents p � d�1(qac) get nothing

! the equilibrium allocation is Pareto inferior to the Shapley allocation)
meets the upper-SACore

! the equilibrium allocation is Non Envious

! strategyproof revelation mechanism



comparing AC and RP ([5])

! for quadratic costs and linear demands, RP collects at least 50% of the

e�cient surplus; RP collects more surplus and overproduces less than AC

! RP allocation may even Pareto dominate AC allocation: e.g. 
at de-

mand

! AC allocation may not Pareto dominate RP, but may collect larger

surplus and overproduce less: e.g. 1d concave

! the worst absolute surplus loss of RP is smaller than that of AC for any

C; both losses are of the same order if the cost is polynomial: ([11])



open question: is the worst absolute loss of RP optimal among all SP

mechanisms?

open question: the structure of strategyproof and budget balanced revela-

tion mechanisms (already hard for c1 = 0 <1 = c2 !)



2.2 multi-units demands, homogenous imc costs

agent i demands xi 2 N (discrete model) or R+ (continuous model)

utility ui(xi)� yi is concave

cost function: C(x) = C(
P
N xi) =

P
N yi

C(0) = 0, C is increasing and convex



a cost sharing rule is ' : x;C ! y = '(x) s.t.
P
N yi = C(

P
N xi)

! for any pro�le of utilities (ui; i 2 N) it de�nes a demand game

! if the demand game has a unique equilibrium (of any kind), this de�nes

a direct revelation mechanism

we look for sharing rules ' generating good incentive properties in the

demand game and the revelation mechanism

among those, we look for rules that are fair as well



discrete model

incremental mechanisms (deterministic)

�x a sequence N 3 t! i(t) 2 N such that jftji(t) = jgj =1 for all j

o�er units at successive costs c1; c2; � � � , in the order of the sequence

an agent is out after �rst refusal



Theorem ([17])

1). The resulting demand game is strictly dominance solvable, its equilib-

rium is strong, and a coalitional Stackelberg equilibrium; the corresponding

revelation mechanism is GSP;

2). These capture all GSP mechanisms meeting

No Charge for No Demand: xi = 0) yi = 0

Consumer Sovereignty: for any k = 0; 1; � � � , agent i can ensure xi = k

Continuity of cost shares w.r.t. costs ci.



continuous model

choose a round-robin sequence f1; 2; � � � ; n; 1; 2; � � � g and an increment �
o�ered successively at prices C(�); C(2�)� C(�); C(3�)� C(2�); � � �

) same incentives properties

in the limit as � ! 0 the serial cost sharing rule obtains

if x1 � x2 � � � � � xn the shares are

y1 =
1

n
C(nx1); y2 = y1 +

1

n� 1
fC(x1 + (n� 1)x2)� C(nx1)g; � � �

yk+1 = yk+
1

n� k
fC(x1;��� ;k+(n�k)xk+1)�C(x1;��� ;k�1+(n�k+1)xk)g

yn = yn�1 + fC(xN)� C(xN�n + xn�1)g



incentives properties of the serial demand game/revelation mechanism

Theorem ([21]) Fix a strictly convex cost function C

1) For every pro�le of AD preferences, the serial demand game is strictly

dominance solvable, its Nash equilibrium is strong, and a coalitional Stack-

elberg equilibrium; the corresponding revelation game is GSP

2) The serial demand game x! y is the only Anonymous, Smooth, Strictly

Monotonic (@iyi > 0) demand game with a unique Nash equilibrium at all

pro�le of AD preferences

(the full AD domain is necessary for statement 2)



compare with the Average Cost demand game:

yi =
xi
xN
C(xN)

existence of a Nash equilibrium is guaranteed with AD preferences

but uniqueness is only guaranteed if preferences are binormal (e.g., quasi-
linear)

even then:

� the direct revelation mechanism is manipulable

� the demand game is not dominance solvable, its Nash equilibrium is
not strong



normative properties of the SER and AVC equilibria ([22], [21])

! the serial cost shares meet the lower Stand Alone core and the Unanimity

Upper Bound

C(xS) � yS for all S � N ; yi �
1

n
C(nxi) for all i 2 N



! the serial Nash outcome (x�i ; y
�
i ) meets the Unanimity Lower bound

ui(x
�
i )� y�i � max

zi�0
fui(xi)�

1

n
C(nxi)g

! it is in the upper SACore: for all S � NX
S

fui(x�i )� y�i g � maxf
X
S

ui(xi)� C(
X
S

xi)g

! it is Non Envious: ui(x
�
i )� y�i � ui(x�j)� y�j for all i; j

SACore and NE compatible for ine�cient outcomes!



compare with the Average Cost equilibrium outcome (s):

! it is in the upper SA core

! but fails the Unanimity Lower bound

! and generates Envy



comparing the e�ciency loss in the serial (SER) and average cost (AVC)

demand games:

� the SER equilibrium Pareto dominates the AVC one at a unanimous

utility pro�le

� the AVC equilibrium cannot Pareto dominates the SER one

� net e�ciency losses in equilibrium are not comparable



Price of Anarchy ([19])

worst ratio 
(n;C; ') of equilibrium surplus to e�cient surplus

! minimum over all pro�les of concave utilities

� for n = 2 and Cp(z) = zp+1, 
(2; Cp; SER) decreases in p from 0:82

to 0:5, while 
(2; Cp; AV C) increases from 0:77 to 0:83; crossing at

p = 0:36

� SER has a much better PoA when n grows large

for any p > 0: 
(n;Cp; SER) = �(
1

lnfng
); 
(n;Cp; AV C) = �(

1

n
)



conjecture: �( 1
lnfng) is the best asymptotic PoA of any demand game:

budget-balanced division of costs with non negative shares

note: for cost sharing rules allowing negative cost shares, an e�cient and

almost budget balanced method can be constructed, provided the cost

function is regular enough (analytic): see [20]



2.3 general supermodular costs

demands xi 2 N; R+

concave utility ui(xi)� yi

cost function: C(xi; i 2 N) =
P
N yi

C(0) = 0, C is increasing and @2C
@xi@xj

� 0



discrete model

incremental mechanisms (deterministic)

�x a sequence N 3 t! i(t) 2 N such that jftji(t) = jgj =1 for all j

o�er units at successive marginal costs, in the order of the sequence

an agent is out after �rst refusal

) the Theorem still applies



continuous model

�x a path � : R+ 3 t ! �(t) 2 RN+ , weakly increasing and di�erentiable,
�(1) =1

the corresponding cost sharing mechanism:

yi =
Z xi
0

@C

@xi
(�(t) ^ x)d�(t)

The strategic properties of the serial demand and revelation games (state-

ment 1) are preserved

The characterization result still awaits a generalization



3 Production games: submodular costs

3.1 binary heterogenous demands

each agent demands 0 or 1 unit of service

N � S ! c(S) SA cost of serving S

TU game (N; c) is submodular

! Population Monotonic (aka Cross Monotonic) cost sharing rules

'i(S; c) � 'i(S [ fjg; c) for all i 2 S � N

examples: Shapley value, Dutta-Ray egalitarian core selection



Theorem ([17]) �x (N; c) submodular

1) the demand game has a Pareto dominant strong equilibrium; the asso-

ciated revelation mechanism is GSP

2) these capture all GSP mechanisms meeting

No Charge for No Demand

Consumer Sovereignty



Theorem ([23]) Among all above mechanisms, the Shapley value has the

smallest worst absolute e�ciency loss

� = f
X

1�s�n

(s� 1)!(n� s)!
n!

X
S�N;jSj=s

c(S)g � c(N)

example: c(S) = F +
P
S ci ) worst loss fPnk=1 Fk g � F ' F lnfng



3.2 multi-units heterogenous demands

sharp contrast binary demands $ multi-units demands

unlike the supermodular case

! existence of a Nash equilibrium of the demand game is no longer guar-

anteed on the full AD domain



discrete model (without loss)

agent i demands xi 2 N+

utility ui(xi) is concave

cost function C is submodular: @2C
@xi@xj

� 0



Cross Monotonic (CM) cost sharing rule ':

'i(xi; xN�i; c) � 'i(xi; x
0
N�i; c) for all xi; xN�i � x

0
N�i

or simply
@'i
@xj

� 0: my cost share decreases in other agents' demands

Complementarity (COMP) of the rule ': @2'i
@xi@xj

� 0

my cost reduction in other agents' demands decreases in my own demand



examples of cross monotonic sharing rules meeting complementarity

! incremental demand games:

�x a sequence N 3 t ! i(t) 2 N such that jftji(t) = jgj = 1 for all j;

given demand pro�le x, charge units at successive costs c1; c2; � � � , in the
order of the sequence

! Shapley Shubik demand games: 'i(x; c) = ESfC(xS + xi)� C(xS)g



Lemma if the rule ' meets CM and COMP, the best reply functions are

increasing, so the demand game has a Pareto dominant Nash equilibrium,

implemented by the canonical descending algorithm

! but this equilibrium does not yield a strategyproof revelation mecha-

nism, or a strong equilibrium



example

n = 2; Qi = 3; increments 1; 2; 1; 2; 1; 2

cost C(x1 + x2) with (c1; � � � ; c6) = (10; 9; 6; 5; 3; 0)

Ann's marginal utilities: 11; 8; 2; Bob's marginal utilities: 8; 4; 3

descending algorithm: Ann: xA = 1 ! Bob: xB = 0 ! utilities: uA =

1; uB = 0

if Ann pretends x0A = 3 ! Bob: x0B = 3 ! utilities: uA = 2; uB = 1



3.3 multi-units homogenous demands, dmc costs

continuous model

agent i demands xi 2 R+

quasi-linear utility ui(xi)� yi concave

C(x) = C(
P
N xi)

C(0) = 0, C is increasing and concave



Theorem ([16])

1) the AC demand game has a Nash equilibrium for C such that C0�AC
increases, but may not otherwise

2) SER and SS (Shapley Shubik) have a Pareto dominant Nash equilibrium

implemented by the descending algorithm



! statement 2) holds for on a larger domain than quasi-linear: binormal

preferences

but on the full AD domain, both SER and SS may fail to have a Nash

equilibrium

conjecture: on the full Arrow Debreu domain, no demand game guarantees

existence of a Nash equilibrium



normative properties of the SER, SS, and AVC equilibria

the equilibrium(a) of each rule, AC, SER, or SS, meets the SA test

the equilibrium of SER

is Non Envious

meets the Unanimity Upper Bound

ui(x
�
i )� y�i � max

zi�0
fui(xi)�

1

n
C(nxi)g



Theorem ([16]) the serial rule is the only cross monotonic simple demand

game of which all Nash equilibria are Non Envious



4 General production games

in many important cost sharing problems the cost is merely subadditive,

and the upper-SACore may be empty (set cover, vertex cover, traveling

salesman, see [27])

a fortiori there is no Cross Monotonic sharing of the cost



�xed priority mechanisms are WGSP and budget balanced, but very unfair,

and (very) badly ine�cient: we often lose the entire surplus

Random Priority is fair, still SP, but equally ine�cient

characterizing all (W)GSP and budget-balance mechanisms is hard, and

existing results hard to read: [10]



new idea

combine strategy-proofness with

budget-balance $ allocative e�ciency

mechanims design literature requires 1 out of 2, ignores the other

! AEFF \ SP: the VCG mechanisms

! BB \ SP: the above results

alternative route ([26]): an approximate version of BB and AEFF, and

exact SP or (W)GSP



binary demands case

�-budget-balance with a budget de�cit

�c(S) �
X
S

yi � c(S)

equivalent results for the budget surplus case

c(S) �
X
S

yi � �c(S)

question: using cross monotonic () GSP) mechanisms, what BB perfor-

mance can we guarantee?



example 1: edge cover problem

agents are vertices of a connected graph

coalition S is served by any set F of edges such that every vertex in S is

an endpoint of some edge in F

C(F) = jFj

Proposition ([9]) the best bound is � = 1
2



example 2: set cover problem

edge cover � set cover � public items problem

N agents; a 2 A � 2N ; ca = 1 for all a

Ai = fB � Aji 2 [Bag

c(S) = minfjBjj[Ba � Sg

Proposition ([9]) an upper bound is � � K
n

other results include vertex cover, facility location ([25])



standard measure of e�ciency performance:

ratio of equilibrium to e�cient surplus

example binary demands caseP
Seq ui � c(Seq)P
Seff ui � c(Seff)

this fails because of knife-edge no-surplus cases

use instead the ratio of equilibrium to e�cient social cost ([26])

c(Seq) +
P
N�Seq ui

c(Seff) +
P
N�Seff ui



acyclic mechanisms ([13]) generalize cross monotonic ones by o�ering cost

shares in turn, and updating o�ers as soon as anyone drops

include �xed priority mechanisms, and much more

! ensure WGSP

! better � and � performance

example set cover

CM mechas ) � � K
n ; � �

K0p
n

Acyclic mechas ) �; � � K
lnfng

! extend to multi-units demands



example: symmetric technology with U-shaped average cost, 3 agents

c1 = 10; c2 = 12; c3 = 24

u1 = 9; = u3 = 7; u2 = 5

e�ciency: Seff = f1; 3g, v(N) = 4

Cross Monotonic mechanism

o�er c33 = 8 to all ! 2; 3 decline ! o�er c1 to 1 who declines ! zero

surplus

Acyclic mechanism



o�er c33 to 1 ! accepts ! o�er c33 to 2 ! declines ! o�er c22 to 1 !
accepts ! o�er c22 to 3 ! accepts ! e�cient surplus
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