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Fair division: generalities

equals should be treated equally, and unequals unequally, according to

relevant similarities and di�erences

what are the relevant di�erences?



horizontal equity: equal treatment of equals

di�erences

� call for compensation when agents are not responsible for creating
them,

� call for reward/penalty when agents are responsible for creating them

example: divide a single resource, concave utilities: expensive tastes, versus

handicaps versus talents: who gets a bigger share?



information about own characteristics

as in general mechanism design

! public information gives full 
exibility to the benevolent dictator (BD),

a.k.a. planner, central authority, system manager

! dispersed private information yield incentives to strategic distortions by

agents, and limits the freedom of the BD

consequence: cardinal measures of utility are only meaningful under public

information; private information on preferences forces the BD to use ordinal

data only



e�ciency : economics' trademark

a requirement neutral w.r.t. fairness



contents of Part 1

1. welfarism: end state justice based on cardinal utilities for which agents

are not responsible; example parents to children, triage doctor, relief dis-

tribution; the collective utility model



2. division of manna: full responsibility for(private) individual ordinal pref-

erences; resources are common property (inheritance, bankruptcy, divorce)

the Arrow Debreu model of pure consumption, with elicitation of prefer-

ences

special subdomains of preferences: homogeneous, linear, Cobb Douglas

and Leontief preferences

variants: non disposable single commodity; assignment with lotteries



contents of Part 2

cost (or surplus) sharing : full responsibility for individual contributions to

cost/surplus

3.TU cooperative games: counterfactual Stand Alone costs or surplus de-

termine the individual shares; the core and the Shapley value

applications to connectivity games and division of manna with cash trans-

fers



elastic demands (inputs): responsibility for own utility and own demand;

look for fair, incentive compatible cost sharing rules with e�cient equilib-

rium

4. exploitation of a commons with supermodular costs: incremental and

serial sharing rules, versus average cost game; price of anarchy

5. exploitation of a commons with submodular costs: cross monotonic

sharing rules; binary demands, optimality of the Shapley value; weaker

results in the variable demands case; approximate budget balance



1 Welfarism

(see [14] for a survey)

end state distributive justice based on cardinal utilities for which agents

are not responsible; example parents to children, triage doctor, relief dis-

tribution

maximizing a collective utility; a reductionist model requiring public infor-

mation



basic tradeo�: the egalitarian/utilitarian dilemma



egalitarian ! leximin social welfare ordering (SWO):

u %lxmin v
def, u� %lex v� where

� %lex is the lexicographic ordering of Rn

� rearranging increasingly individual utilities: RN 3 u! u� 2 Rn

utilitarian ! collective utility function (CUF) W (u) =
P
N ui, with some

tie-breaking



examples

u1 = 2u2

location of a facility on a line (or general graph) when each agent wants

the facility as close as possible to home



general CUFs: W (u1; ::; un) symmetric, monotone, scale invariant

a rich subfamily: W p(u) = sign(p)
P
N u

p
i for any given p 2 R

! p = 1: utilitarian

! p = �1: leximin SWO

! p = 0: W (u) =
P
N ln(ui), the Nash CUF

the subfamily and its benchmark elements are characterized by properties

of informational parsimony



Pigou Dalton transfer : from u to v such that for some k and ":

v� = (u�1; � � � ; u�k�1; u
�
k+"; u

�
k+1�"; u

�
k+2; � � � ; u

�
n), and u

�
k+" � u

�
k+1�"

an equalizing move: it improves the leximin SWO, the Nash CUF, all W p

such that p � 1, and is neutral w.r.t. the utilitarian CUF

! example: W 2 favors inequality



u Lorenz dominates (LD) v i�: v�1 � u�1; v�12 � u�12; � � � ; v�N � u�N with at

least one strict inequality (notation uS =
P
S ui)

u is Lorenz optimal in the set F of feasible utility pro�les, i� it is not

Lorenz dominated in F

Lemma 1). u LD v if and only if we can go from v to u by a sequence

of PD transfers; 2). u is Lorenz optimal in F if any PD transfer from u

leaves F

examples: �gures when F is convex and n=2; location of a facility



� a Lorenz dominant pro�le is the endpoint of all sequences of PD trans-
fers

� a Lorenz dominant pro�le u maximizes all separably additive and con-
cave CUFs W (u) =

P
N w(ui), in particular the leximin SWO, all W

p

CUFs, hence Nash, utilitarian,..

! it is the compelling welfarist solution



! existence of a compact subset of Lorenz optimal pro�les is guaranteed

if F is compact

! existence of a Lorenz dominant pro�le is not

(see examples n = 2)

Proposition: �x V a sub (super)modular set function V : 2N�?! R, and
F =fujuN = V (N) and uS � V (S) for all S � Ng, (resp. �); then the
greedy algorithm starting with the largest solution to argmin

V (S)
jSj (resp.

to argmax
V (S)
jSj ) picks the Lorenz dominant element of F



2 Division of manna

(see [15] or [22] for a survey)

! to share a bundle of desirable goods/ commodities, consumed privately

! full responsibility for own \tastes" (preferences re
ect no needs)

! no individual responsibility for the creation of the resources: common

property regime

! private ordinal preferences (we still speak of utility for convenience)



goal : to design a division rule achieving

E�ciency (aka Pareto optimality) (EFF)

Strategyproofness (SP): truthful report of one's preferences (dominant

strategy for a prior-free context)

Fairness: sanctioned by a handful of tests starting with

Equal Treatment of Equals (ETE): same utility for same preferences

strengthened as

Anonymity (ANO): symmetric treatment of all players (names do not mat-

ter)



four plus one tests of fairness

two single pro�le tests

Unanimity Lower Bound (ULB): my utility should never be less than the

utility I would enjoy if every preferences was like my own (and we were

treated equally)

No Envy (NE): I cannot strictly prefer the share of another agent to my

own share

in the standard Arrow-Debreu model below, the unanimity utility level

corresponds precisely to the consumption of 1/n-th of the resources (this

is not always true in other models)



ETE, ULB, and NE are not logically independent:

! NE implies ETE

! NE implies ULB in the Arrow Debreu model with only two agents

there is also a link between fETE + SPg and NE



two plus one multi-pro�le tests

Resource Monotonicity (RM): when the manna increases, ceteris paribus,

the utility of every agent increases weakly

Population Monotonicity (PM): when a new agent is added to the partic-

ipants , ceteris paribus, the utility of every agent decreases weakly

both RM and PM convey the spirit of a community eating the resources

jointly (egalite et fraternite), while UNA and NE formalize precise individual

rights



Consistency (CSY): when an agent leaves, and takes away the share as-

signed to him, the rule assigns the same shares in the residual problem

(with one less agent and fewer resources) as in the original problem

unlike the other 6 axioms CSY conveys no intuitive account of fairness; it

simply checks that \every part of a fair division is fair"



! each multipro�le test by itself is compatible with grossly unfair rules

the �xed priority rules is RM, PM, and CSY: �x a priority ordering of all

the potential agents, and for each problem involving the agents in N, give

all the resources to the agent in N with highest priority

this is not true for ETE, ANO, ULB, or NE: each property by itself, guar-

antees some level of fairness

an incentive (as opposed to a normative) interpretation of RM and PM

! absent RM, I may omit to discover new resources that would bene�t

the community

! absent PM, I may omit to reveal that one of us has no right to share

the resources



3 Arrow Debreu (AD) consumption economies

the canonical microeconomic assumptions

N 3 i: agents, jN j = n

A 3 a: goods, jAj = K

! 2 RK+ : resources to divide (in�nitely divisible)

%i: agent i's preferences: monotone, convex, continuous, hence repre-
sentable by a continuous utility function

! an allocation (zi; i 2 N) is feasible if zi 2 RK+ and
P
N z

i = !

! it is e�cient i� the upper contour sets of %i at zi are supported by a
common hyperplane



the equal division rule (zi = 1
n! for all i) meets all axioms above, except

EFF

�rst impossibility results: fairness $ e�ciency tradeo�

� EFF \ ULB \ RM =EFF \ NE\ RM =? ([16])

the easy proof rests on preferences with strong complementarities, close to
Leontief preferences

second impossibilities: tradeo� e�ciency $ strategyproofness $ fairness

� EFF \ ULB \ SP = EFF \ ETE \ SP =? ([5]; [4])

the proof is much harder



the �xed priority rules are EFF \ SP \ RM \ PM \ CSY, and violates

ETE, hence ANO and NE as well

! from now on we only consider division rules meeting EFF and ANO

the next two rules are the main contributions of microeconomic analysis

to fair division



Competitive Equilibrium from Equal Incomes (CEEI): �nd a feasible al-

location (zi; i 2 N) and a price vector p 2 RK+ s.t. p � ! = n and

zi = argmaxz:p�z�1 %i for all i

existence requires convexity of preferences (as well as continuity and mono-

tonicity); uniqueness is not always guaranteed, except in the large subdo-

mains of homogenous preferences (below), or under gross substitutability;

e�ciency is hardwired

! the CEEI rule meets both single-pro�le tests ULB and NE (irrespective

of tie-breaking)

[when agents are negligible and their preferences are connected CEEI is

characterized by EFF \ NE]

! the CEEI rule is CSY but fails RM and PM on the AD domain



!-Egalitarian Equivalent rule (!-EE): �nd an e�cient allocation (zi; i 2
N) and a number �; 1n � � � 1, such that z

i 'i �! for all i

existence, and uniqueness of utilities holds even with non convex prefer-

ences (continuity and monotonicity are still needed)

for the third solution we �x a numeraire vector � � 0 in RK+

�-Egalitarian Equivalent rule (�-EE): �nd an e�cient allocation (zi; i 2 N)
and a number � � 0, such that zi 'i �� for all i

same remarks about existence



! the !-EE rule meets ULB and PM; it fails RM and CSY

! the �-EE rule is RM and PM; it fails ULB and CSY

both rules fail NE and can even lead to Domination: zi � zj for some

agents i; j

we dismiss �-EE rules in the sequel because a) they fail both critical single

pro�le tests, b) the choice of � is entirely arbitrary



an example: two goods X,Y, four agents with linear preferences

utilities 5x+ y; 3x+ 2y; 2x+ 3y; x+ 5y; resources ! = (4; 4)

!-EE allocation: y1 = y2 = x3 = x4 = 0, and

5x1 = 3x2 = 3y3 = 5y4 = 24�

) x1 = y4 =
3

2
; x2 = y3 =

5

2

exhibiting Domination

compare CEEI: x1 = x2 = y3 = y4 = 2



an example: two goods X,Y, and linear preferences

�x n and �; 0 � � � 1, such that �n is an integer; set �0 = 1� �

�n agents of type "X" have utilities 2x+ y when consuming (x; y)

�0n agents of type "Y" have utilities x0 + 2y0 when consuming (x0; y0)

the endowment is ! = (n; n)

e�ciency rules out at least one of x0 > 0 and y > 0



the !-EE allocation is symmetric (same allocation for agents of same type)

and solves

2x+ y = 3�; x0 + 2y0 = 3�

�x+ �0x0 = 1; �y + �0y0 = 1

assume without loss � � 1
2; the solution is � =

2
1+�0

x =
3

1 + �0
; y = 0; x0 =

4�0 � 2
�0(1 + �0)

; y0 =
1

�0



the CEEI allocation hinges around the price (pX ; pY ) normalized so that

pX + pY = 1

if pX � 2pY and pY � 2pX , type X agents spend all their money to get
1
pX

units of good X, while type Y agents similarly buy 1
pY

units of good

Y ; this is feasible only if pX = �; pY = �0; so if 13 � � � 2
3, the allocation

is

x =
1

�
; y = 0; x0 = 0; y0 =

1

�0

if � � 1
3 the type Y agents must eat some of each good, which is only

possible at the price pX = 1
3; pY = 2

3 where they are indi�erent about

buying either good; then

x = 3; y = 0; x0 =
3�0 � 2
�0

; y0 =
1

�0



CEEI and !-EE take radically di�erent views of scarce preferences

assume � goes from 1
2 to 0, so the type X become increasingly scarce

! the utility of both types X and types Y under !-EE is 6
2��, decreasing

from 4 to 3

! under CEEI, while � decreases to 1
3, the utility

2
� of type X increases

from 4 to 6, the utility 2
1�� of type Y decreases from 4 to 3; both utilities

remain 
at for 13 � � � 0



misreporting opportunities are more severe under the !-EE rule

!-EE: if the number of agents is large, a type X agent i bene�ts by reporting

utility x+ y: the parameter � does not change much and i gets xi; yi s.t.

xi + yi ' 2� and yi = 0; so xi ' 2� improves upon x = 3
2�

CEEI: misreport does not pay when 1
3 � � � 2

3 if a single message does

not alter the price much; if � � 1
3 a type Y agents' misreport only has a

second order impact on his utility



3.1 subdomains of Arrow Debreu preferences

the largest and most natural, containing all the applications

homothetic preferences: z % z0 ) �z % �z0 for all z; z0 2 RK+ and all

� > 0

representable by utility u homogenous of degree one

Theorem (Eisenberg, Chipman, Moore): under homothetic preferences,

the CEEI allocation maximizes the Nash CUF
P
N lnfui(zi)g over all fea-

sible allocations (zi; i 2 N)

the proof is elegantly simple, see Chapter 14 in [23]



) the CEEI solution is unique utility-wise, and even allocation-wise if the

functions ui are log-concave

moreover if the CEEI rule is RM on some homogenous subdomain, it is

also PM on that domain



we look at three subdomains of homogenous preferences, useful in applica-

tions because each preference is described by a vector � 2 RK+ normalized

by
P
A �a = 1

� Cobb-Douglas: u(z) = P
A �a ln(za)

� linear: u(z) = P
A �aza

� Leontief: u(z) = minaf za�ag (where � � 0)

linear preferences have maximal substitutability, Leontief ones have max-

imal complementarity, with Cobb-Douglas preferences somehwere in be-

tween



3.1.1 Cobb-Douglas preferences

the CEEI allocation is computed in closed form

price pa =
�Na
!a
; zi = arg max

z:p�z�1
f
X
A

�ia ln(z
i
a)g = (

�ia

�Na
!a; a 2 A)

implying at once that the CEEI rule is RM, hence PM as well

the !-EE allocation cannot be computed in closed form; its computational

complexity appears to be high

the !-EE rule is RM, and PM as always

! the two solutions have very similar properties (CSY is the only excep-

tion), in particular neither is SP on the Cobb Douglas domain



3.1.2 linear preferences

Proposition the CEEI rule is RM, hence PM as well

the proof is not simple, and neither is the computation of the solution

Open question: is the !-EE rule also RM in the linear domain?

neither solution is SP on the linear domain ([6])



3.1.3 linear + dichotomous preferences

agent i likes the commodities in Ai as equally good, others are equally

bad: ui(z
i) = ziAi

; assume [NAi = A; notation AS = [SAi

e�ciency: all goods are eaten and i consumes only goods in Ai

utility pro�le (ui; i 2 N) is feasible i� uN = !N and uS � !AS for all

S � N

Proposition: the CEEI utility pro�le is the Lorenz dominant feasible pro�le;

the CEEI rule is RM, PM, and (Group)SP



! the !-EE utility pro�le becomes similarly the Lorenz dominant feasible

pro�le of relative utilities ( ui!Ai
; i 2 N); it maximizes the weighted Nash

CUF
P
N !Ai lnfuig in the feasible set

! the !-EE rule is RM and PM, but not SP



3.1.4 cake cutting


 a compact set in RL: the cake

agent i's utility for a (Lebesgue-measurable) piece of cake A:
R
A ui(x)dx

(or simply
R
A ui)

the density ui is strictly positive and continuous on 
, and normalized asR

 ui = 1

agent i's share is Ai, where fAi; i 2 Ng is a partition of 


a partition is e�cient if and only if

min
Ai

ui
uj
� max

Aj

ui
uj
for all i; j

hence uiuj
is constant on any contact line of Ai and Aj



consequence of additivity of utilities: NE ) ULB

!-EE allocation: each agent receives the same fraction of total utility

(normalized to 1), therefore
R
Ai
ui =

R
Aj
uj for all i; j



the CEEI partition maximizes the Nash CUF; the KT conditions read

ui(x)R
Ai
ui
�
uj(x)R
Aj
uj
for all i and all x 2 Ai

write i's net utility Ui =
R
Ai
ui; the KT conditions amount to

min
Ai

ui
uj
� Ui
Uj

� max
Aj

ui
uj
for all i; j

the price is simply p(x) =
ui(x)R
Ai
ui
for x 2 Ai



cake cutting as a limit case of the linear preferences AD model

if each density ui takes only �nitely many distinct values (therefore dis-

continuous), cake division is an instance of the AD model with linear pref-

erences

conjecture: a limit argument carries the properties of the linear model to

cake division:

) CEEI is RM and PM, !-EE is PM and perhaps RM as well



cake cutting is the subject of a large mathematical literature: e.g., [11],[10],

see [12] for a survey

and (recently) algorithmic literature: [?],[16]

its own terminology

ULB $ proportional:
R
Ai
ui � 1

n

EE $ equitable:
R
Ai
ui =

R
Aj
uj for all i; j

goal : �nd simple "cutting" or "knife-stopping" algorithms to implement a

non envious allocation, or an equitable allocation



strategy-proof cake-cutting methods

Lemma ([10]) there always exists a perfect division of the cake:
R
Ai
ui =R

Aj
ui for all i; j ()

R
Ai
ui =

1
n for all i)

mechanism: elicit utilities, then compute a perfect division, then assign

shares randomly without bias

! this requires risk-averse preferences

! far from e�cient allocation



cake cutting with dichotomous preferences

a limit case of the linear + dichotomous domain above

many SP mechanisms to explore: [?]



3.1.5 Leontief preferences

the de�nition of the !-EE allocation is altered to rule out waste, then it is

computed in almost closed form

fzi = �i�i and �i = �ui(!)g ) �f
X
N

uj(!)�
j
ag � !a

the optimal � is mina
!aP

N uj(!)�
j
a
therefore

zi = min
a

ui(!)!aP
N uj(!)�

j
a

�i; and ui(z
i) = min

a

ui(!)!aP
N uj(!)�

j
a



Theorem ([2],[3]): the non wasteful !-EE rule is GSP, NE, RM, PM, and

CSY

the only missing axiom is ULB

it is possible to de�ne rules meeting GSP, ULB, and PM

! compare CEEI: not SP and neither RM nor PM

many more mechanisms meet the axioms in the theorem; they respect the

spirit of !-EE to equalizeutilities along a benchmark ([3])



4 one non disposable commodity

a variant of the AD model: satiated preferences, no free disposal

examples: sharing a workload, a risky investment, a �xed amount of a

�xed price commodity

! 2 R+: amount of resource to divide (in�nitely divisible)

%i: agent i's preferences over [0; !]: single-peaked, i.e., unique maximum
�i, strictly increasing (decreasing) before (after) �i

! feasible allocation (zi 2 R+; i 2 N),
P
N z

i = !



! e�cient allocation:

if
P
N �

i � ! then zi � �i (excess demand)

if
P
N �

i � ! then zi � �i (excess supply)



the uniform solution

if
X
N

�i � ! then zi = minf�; �ig where
X
N

minf�; �ig = !

if
X
N

�i � ! then zi = maxf�; �ig where
X
N

maxf�; �ig = !

CEEI-like interpretation: if excess demand, price 1 and budget �, dispos-

able; if excess supply, price 1, unbounded budget, must spend at least

�



Resource/Population Monotonicity need adapting: more resources/ fewer

agents is good news if excess demand, bad news if excess supply

Resource Monotonicity� (RM�): more resources means either weakly good
news for everyone, or weakly bad news for everyone

Population Monotonicity� (PM�): one more agent means either weakly
good news for all current agents, or weakly bad news for all



Theorem ([21],[20]) the uniform solution is SP, NE, RM�, PM�, and CSY;
it is characterized by the combination of EFF, ETE, and SP

! the uniform rule is the compelling fair division rule

! the division in proportion to peaks plays no special role because agents

are responsible for their preferences (compare with the claims problem,

where a claim �i is an objective "right", and proportional division is a

major player)



5 assignment

a variant of the AD model with several comparable commodities (similar

jobs), and �xed individual total shares of commodity

special case: random assignmemt of indivisible goods (one item per agent)

N 3 i: agents, jN j = n

A 3 a: goods, jAj = K

! 2 RK+ : resources to divide (in�nitely divisible)

agent i has a quota qi



! an allocation (zi; i 2 N) is feasible if

zi 2 RK+ ;
X
N

zi = !;
X
A

zia = q
i

because we focus on anonymous division rules, we assume qi = 1
n

P
A !a



the random assignment model : jAj = n; !a = 1 for all a, zia is the

probability that i gets object a

Birkhof's theorem ) frandom assignment of the indivisible goodsg ,
fdeterministic assignment of the divisible goodsg

we discuss several assumptions on individual preferences



5.1 linear preferences (random assignment: vonNeuman-

Morgenstern utilities)

CEEI rule: �nd a price p 2 RK+ and a feasible (zi; i 2 N) such that

zi 2 arg max
p�z�1;zA=qi

f� � zg for all i

!-EE rule: �nd a positive number � and an e�cient feasible (zi; i 2 N)
such that � � zi = �(� � !) for all i



the Eisenberg Chipman Moore theorem still holds: the CEEI solution max-

imizes the Nash product, is unique utility-wise and allocation-wise

! all easy properties are preserved: CEEI meets ULB, NE, CSY

! !-EE meets ULB, PM, but generates Domination and fails CSY

! neither solution is SP

Open question: does the CEEI rule meets RM (hence PM)?

Open question: is the !-EE rule also RM in the linear domain?



5.2 ordinal preferences

in practical instances of the random assignment problem (school choice,

campus rooms, time slots, similar jobs), we can only elicit from each agent

i her ordinal ranking �i of the various goods; this yields a partial ordering
�sdi of her allocations

if top = a �i b �i c �i � � �

z �sdi z0
def, za � z0a; za+zb � z0a+z0b; with at least one strict inequality

(sd : stochastic dominance for the probabilistic interpretation; otherwise

Lorenz dominance)



the feasible allocation (zi; i 2 N) is ordinally e�cient i� there is no feasible
allocation (z0i; i 2 N) such that z %sdi z0 for all i, with at least one strict
relation

! for random assignment, this notion is stronger than ex post e�ciency,

and weaker than ex ante e�ciency

! for deterministic assignments, alternative interpretation (Schulman Vazi-

rani): individual preferences are lexicographic in RK+ when coordinates are

ranked according to �i; (ordinary) e�ciency w.r.t. lexicographic prefer-
ences () ordinal e�ciency



the !-EE allocation cannot be adapted in the absence of a complete pref-

erence relation; same remark for the Nash CUF

the Probabilistic Serial (PS) allocation has two equivalent de�nitions:

� eating algorithm: agents eat at the same speed from their best com-

modity among those not yet exhausted

� leximin optimum of the Lorenz pro�le

it can be interpreted as a version of CEEI (Kesten)



leximin de�nition of PS

the Lorenz curve of z at �i is Lc(z;�i) = (za; za + zb; za + zb + zc; � � � )
where top=a �i b �i c �i � � �

the Lorenz pro�le Lc(z;�) is the concatenation of the Lorenz curves
Lc(zi;�i) at the allocation z = (zi; i 2 N) and preference pro�le �=
(�i; i 2 N)

Proposition: the Lorenz pro�le Lc(z�;�) of the PS allocation z� is leximin
optimal:

Lc(z�;�) %lxmin Lc(z;�) for all feasible allocations z

this de�nition holds even if preferences exhibit some indi�erences; the

eating algorithm is harder to adjust to indi�erences (Katta Sethuraman)



example: random assignment with 3 agents and 3 objects

a �1 b �1 c
a �2 c �2 b
b �3 a; c

PS =

a b c
1
2

1
4

1
4

1
2 0 1

2
0 3

4
1
4



Resource/Population Monotonicity : more resources, or one agent less

means a larger quota for everyone

if zA � z0A we say that z is sd preferred to z0 i� z=z0 %sdi z0, where z=z0

collects the z0A best units of commodities for agent i; we still write z %sdi z0

the de�nition of RM, PM is then the same

Strategyproofness: if i gets zi by telling the truth %i, and z0i by telling a
lie, sd-SP requires z %sdi z0, whereas weak-SP only asks ez0 %sdi z



Theorem ([18])

i) the PS meets ordinal-EFF; (sd) ULB, NE, RM, PM; and weak-SP

ii) for n � 4, there is no assignment rule meeting ordinal-EFF, ETE, and
sd-SP



the Random Priority assignment is simply the average of the �xed priority

assignments (�rst in line takes his best qi units, next one takes his best qi

in what is left, etc..); it is a popular method, easier to implement than PS,

but much harder to "compute"

RP has stronger incentives properties than PS

! the RP rule meets sd{ULB, sd-SP, and weak-NE

back to the example

RP =

a b c
1
2

1
6

1
3

1
2 0 1

2
0 5

6
1
6

PS =

a b c
1
2

1
4

1
4

1
2 0 1

2
0 3

4
1
4



RP has weaker e�ciency properties than PS: not ordinally e�cient

a �1 b �1 c �1 d
a �1 b �1 c �1 d
b �1 a �1 d �1 c
b �1 a �1 d �1 c



scheduling example with deadline (opting out)

4 agents with deadlines respectively t = 1; 2; 3; 4

RP =

1
4 0 0 0
1
4

1
3 0 0

1
4

1
3

3
8 0

1
4

1
3

3
8

1
24

PS =

1
4 0 0 0
1
4

1
3 0 0

1
4

1
3

5
12 0

1
4

1
3

5
12 0

! PS stochastichally dominates RP

! PS and RP are assymptotically equivalent



5.3 dichotomous preferences

the particular case of ordinal preferences where commodities (objects) are

viewed as good or bad (two indi�erence classes) ) the relation %sdi is

complete, represented by the canonical utility ui(z) =
P
a is good for i za

Proposition ([19]): CEEI allocations and PS allocations (leximin de�ni-

tion) coincide; their unique utility pro�le is Lorenz dominant in the feasible

set; the corresponding rule is (are) (group) SP

! similar to the case of manna with linear dichotomous preferences
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