# Auctions as Games: Equilibria and Efficiency Near-Optimal Mechanisms

Éva Tardos, Cornell

## Games and Quality of Solutions



Tragedy of the Commons

 Rational selfish action can lead to outcome bad for everyone

#### Model:

- Value for each cow decreasing function of # of cows
- Too many cows: no value left

# Good Example: Routing Game





- Traffic subject to congestion delays
- cars and packets follow shortest path
   Congestion game = cost (delay) depends only on congestion on edges

# Simple vs Optimal

- Simple practical mechanism, that lead to good outcome.
- optimal outcome is not practical





# Simple vs Optimal

- Simple practical mechanism, that lead to good outcome.
- optimal outcome is not practical

## Also true in many other applications:

- Need distributed protocol that routers can implement
- Models a distributed process
- e.g. Bandwidth Sharing, Load Balancing,

## Games with good Price of Anarchy

- Routing:
- Cars or packets though the Internet
- Bandwidth Sharing:
- routers share limited bandwidth between processes
- Facility Location:
- Decide where to host certain Web applications
- Load Balancing
- Balancing load on servers (e.g. Web servers)
- Network Design:
- Independent service providers building the Internet

# Today Auction "Games"

Basic Auction: single item Vickrey Auction

\$2

\$5



\$3

\$4



Player utility 
$$v_i - p_i$$

item value -price paid

Vickrey Auction (second price)

- Truthful
- Efficient
- Simple

Extension VCG (truthful and efficient), but not so simple

# Vickrey, Clarke, Groves

#### Combinatorial Auctions



Buyers have values for any subset  $S: v_i(S)$  user utility  $v_i(S)$ -  $p_i$  value -price paid

- Efficient assignment:  $\max \sum_i v_i(S^*_i)$  over partitions  $S^*_i$
- Payment: welfare loss of others

$$p_i = \max \Sigma_{j \neq i} v_j(S_j) - \sum_{j \neq i} v_j(S_j^*)$$

Truthful!

## Truthful Auction

Special case: unit demand bidders:



price = welfare loss of others

$$p_i = \max_{M = \{(k, j_k)\}} \sum_{k \neq i} v_{kj_k} - \sum_{k \neq i} v_{kj_k^*}$$

## Truthful Auction

Special case: unit demand bidders:



Assignment: max value matching

$$\max_{M^*} \sum_i v_{ij_i^*}$$

price = welfare loss of others

$$p_i = \max_{M = \{(k, j_k)\}} \sum_{k \neq i} v_{kj_k}$$
$$-\sum_{k \neq i} v_{kj_k^*}$$

- Requires computation and coordination
- pricing unintuitive

## Auctions as Games

simpler auction game are better in many settings.

- analyze simple auctions
- understand which auctions well and which work less well

First idea: simultaneous second price



## Auctions as Games

- Simultaneous second price?
   Christodoulou, Kovacs, Schapira ICALP'08
   Bhawalkar, Roughgarden SODA'10
- Greedy Algorithm as an Auction Game Lucier, Borodin, SODA'10
- AuAuctions (GSP)
   Paes-Leme, T FOCS'10, Lucier, Paes-Leme + CKKK EC'11
- First price?
   Hassidim, Kaplan, Mansour, Nisan EC'11
- Sequential auction?
   Paes Leme, Syrgkanis, T SODA'12, EC'12

Question: how good outcome to expect?



# Simultaneous Second Price unit demand bidders

Is simultaneous second price truthful

No!

limited bidding language



How about Nash equilibria?

# Nash equilibria of bidding games

Vickrey Auction - Truthful, efficient, simple (second price)



but has many bad Nash equilibria

Assume bid ≤ value (higher bid is dominated)

Theorem: all Nash equilibria efficient: highest value winning

# Simultaneous Second Price unit demand bidders

Bidding above the item value is dominated:

Assume  $b_{ij} \le v_{ij}$  all i&j.

## Question:

How good are Nash equilibria?

# Price of Anarchy

## Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

Proof Consider the optimum  $M^*$ . If i won  $j_i^*$  he has the same value as in OPT Else, some other player k won  $j_i^*$ Current solution is Nash: i cannot improve his utility by changing his bid



# Price of Anarchy

### Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value  $v(N) = \sum_{i} v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_{i} v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \forall i \& j$ ).

Proof (cont.) player k won  $j_k = j_i^*$ 

player i could bid  $b_{ij_i^*} = v_{ij_i^*}$  and  $b_{ij} = 0 \ \forall j \neq j_i^*$  i

- If he wins he gets value  $v_{ij_i^*}$   $b_{kj_i^*}$
- Else  $v_{ij_i^*} \leq b_{kj_i^*}$



$$v_{ij_i} \ge v_{ij_j^*} - b_{kj_i^*} \ge v_{ij_i^*} - v_{kj_k}$$
 (assuming  $b_{ij} \le v_{ij}$ )

Sum over all players: Nash ≥ OPT - Nash





# Unit Demand Bidders: example

Nash value 19+1=20
Bids 0, 1, 19, 0
OPT value 20+20=40
Inequalities





 $1 \ge 20 - 19$  winner of his item has high value at Nash



 $19 \ge 20-1$  he has high value at Nash

Both "charging" to the same high value at OPT

# Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

- Quality of Nash Equilibria
- What if stable solution is not found?
   Is such a bound possible outside of Nash outcome?
- What if other player's values are not known
   Is such a bound possible for a Bayesian game?
- Other games?
   Do bounds like this apply other kind of game?

# Selfish Outcome (2)?

Is Nash the natural selfish outcome?

How do users coordinate on a Nash equilibrium, e.g., which do the choose?

- Does natural behavior lead no Nash?
- Which Nash?
- Finding Nash is hard in many games...
- What is natural behavior?
  - Best response?
  - Noisy Best response (e.g. logit dynamic)
  - learning?
  - Copying others?

# Auctions and No-Regret Dynamics



Vanishingly small regret for any fixed strat x:  $\sum_{t} u_{i}(b_{i}^{t}, b_{-i}^{t}) \geq \sum_{t} u_{i}(x, b_{-i}^{t}) - o(T)$ 

## Learning:

see Avrim Blum starting Wednesday

Iterated play where users update play based on experience

Traditional Setting: stock market

m experts N options

Goal: can we do as well as the best

expert?

Regret = average utility of single best strategy with hindsight - long term average utility.

# No Regret Learning



-as the single stock in hindsight?

Idea: if there is a real expert, we should find out who it is after a while.

No regret: too hard (would need to know expert at the start)

Goal: small regret compared to range of cost/benefit

# Learning in Games



Goal: can we do (almost) as well as the best expert?



Games?



Focus on a single player: experts = strategies to play Goal: learn to play the best strategy with hindsight

Best depends on others

# Learning in Games

Focus on a single player: experts = strategies to play

Goal: learn to play the best strategy with hindsight



## Best depends on others did

Example: matching pennies

With  $q=(\frac{1}{2},\frac{1}{2})$ , best value with hindsight is 0 Regret if our value < 0

|   | 1/2 | 1/2 |  |
|---|-----|-----|--|
|   | -1  | 1   |  |
| • | 1   | -1  |  |
|   | 1   | -1  |  |
|   | -1  | 1   |  |

# Learning in Games

Focus on a single player: experts = strategies to play

Goal: learn to play the best strategy with hindsight



## Best depends on others did

Example: matching pennies

With q=(¾,¼), best value with hindsight is ½ (by playing top).
Regret if our value < ½

| 3 4 |    | <del>1</del> /4 |    |
|-----|----|-----------------|----|
|     | -1 |                 | 1  |
| 1   |    | -1              |    |
|     | 1  |                 | -1 |
| -1  |    | 1               |    |

# Learning and Games see Avrim Blum starting Wednesday

 Regret = average utility of single best strategy with hindsight - long term average utility.

Nash = strategy for each player so that players have no regret

Hart & Mas-Colell: general games → Long term average play is (coarse) correlated equilibrium

Simple strategies guarantee vanishing regret.

# (Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such that for all players

expected utility  $\geq$  exp. utility of any fixed strategy

Correlated eq. & players independent = Nash

### Learning:

Players update independently, but correlate on shared history

# Quality of learning outcome

Theorem Unit demand bidders, the total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

How about outcome of no-regret learning (coarse correlated equilibria)?

Same bound applies!

Idea: proof was based on "player i has no regret<sup>k</sup> about one strategy"

bid 
$$b_{ij_i^*} = v_{ij_i^*}$$
 and  $b_{ij} = 0 \ \forall j \neq j_i^*$ 

outcome of no-regret learning: no regret about any strategy!

# Quality of learning outcome

Theorem Unit demand bidders, the total value  $E[v(N)]=E[\sum_i v_{ij_i}]$  expected value at an outcome distribution  $D=\{(i,j_i)\}$  with no regret is  $\geq \frac{1}{2}$  of OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j \& \; all \; bids$ ).

Proof: player i has no regret about one strategy bid  $b_{ij_i^*} = v_{ij_i^*}$  and  $b_{ij} = 0 \ \forall j \neq j_i^*$ 

Price of  $j_i^*$  is a bid by an other player  $\leq$  value  $v_{ij_i}$  = value for player i

 $b_j$  = bid winning item  $j \le v(j)$  = value for winner

$$E(v_{ij_i}) \ge v_{ij_i^*} - E(b_{j_i^*}) \ge v_{ij_i^*} - E(v(j_i^*))$$

Sum over all player  $E_D(SW) \ge OPT - E_D(SW)$ 



# Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

- Quality of Nash Equilibria
- ✓ What if stable solution is not found?

  Is such a bound possible outside of Nash outcome?
- What if other player's values are not known
   Is such a bound possible for a Bayesian game?
- Other games?
   Do bounds like this apply other kind of game?

# Bayesian Auction games

Valuations v drawn from distribution &

For simplicity assume for now

- single value v<sub>i</sub> for items of interest
- $(v_1, ..., v_n) \in \mathcal{F}$  drawn from a joint distribution



- OPT  $i_i^*$  random
- Depends on information i doesn't have!

# Bayesian Price of Anarchy

Theorem Unit demand bidders, the total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

### How about outcome of Bayesian game?

proof was based on "player i has no regret about one strategy"

bid 
$$b_{ij_i^*} = v_{ij_i^*}$$
 and  $b_{ij} = 0 \ \forall j \neq j_i^*$ 

- Optimal item  $j_i^*$  depends on others
- Player can have no regret about any fixed item j, but not about  $j_i^*$

# Bayesian Price of Anarchy

Theorem Unit demand single parameter bidders, total expected value  $E(v(N))=E(\sum_{i\in N}v_i)$  at an equilibrium distr.  $N=\{(i,j)\}$  (assuming  $b_i\leq v_i \forall i$ ) is at least  $\frac{1}{4}$  of the OPT= $E(\max_{M}\sum_{i\in M}v_i)$  assuming auction guarantees max one assigned item

proof "player i has no regret about bidding ½vi"

- If player wins: price  $\leq b_i \leq \frac{1}{2}v_i$ hence utility at least  $\frac{1}{2}v_i$
- If he looses, all his items of interest, went to players with bid (and hence value) at least  $\frac{1}{2}v_i$ . In either case

$$\frac{1}{2}v_{ij_i^*} \ge v_{ij_i} + b_{j_i^*} \ge v_{ij_i} + v(j_i^*)$$

Sum over player, and take expectation over  $v \in \mathcal{F}$  $\frac{1}{2}OPT \ge E(v(N) + E(v(N)))$ 

# Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value  $v(N) = \sum_i v_{ij_i}$  at a Nash equilibrium  $N = \{(i, j_i)\}$  is at least  $\frac{1}{2}$  of optimum OPT=  $\max_{M^*} \sum_i v_{ij_i^*}$  (assuming  $b_{ij} \leq v_{ij} \; \forall \; i \& j$ ).

- Quality of Nash Equilibria
- ✓ What if stable solution is not found?

  Is such a bound possible outside of Nash outcome?
- ✓ What if other player's values are not known Is such a bound possible for a Bayesian game?
- Other games?
   Do bounds like this apply other kind of game?

## AdAuction

Web Images Video Maps News Shopping Gmail more ▼

ETardos@gmail.com | Web History | My Account | Sign out

Google
Budapest vacation
Search
Preferences

Web Show options...

Results 1 - 10 of about 412,000 for **Budapest vacation**. (0.16 seconds)

#### Private Guided Europe

Sponsored Links

www.KensingtonTours.com **Budapest**, Vienna, Prague from \$1009 Nat'l Geo Adventure, Top Outfitter.

#### **Budapest Vacation**

www.Travelocity.com/**Vacation**s Book Your Trip on Travelocity. We Offer Guaranteed Low Prices.

#### Sofitel Chic Picnic Offer

www.sofitel.com Book a minimum of 3 nights and get a gourmet picnic basket!

#### **Budapest Vacation Packages - Reviews of Budapest Travel Packages**

---

Budapest Hotel Deals: Find great deals from hotel of websites, and book the right hotel using TripAdvisor's 10000 reviews of sudapest lotels.

www.tripadvisor.com/Packages-g274867-V sation-Package-Discount-Budapest.html - 165k - Cached - Similar pages -

#### Budapest, Hungary - Lucay est Travel, Tourism and Vacation

#### Reviews ...

Budapest, Hungry' Trib. Sor has 12000 impartial reviews and articles on what to do, where to each an where to stay when in Budapest.

www.tripa visc.com ourism-g274887-Budapest-Vacations.html - 76k - Cached Silv ar riggs -

More resits it in www.tripadvisor.com »

Sponsored Links

#### Hilton Hotel Budapest

Our best rates guaranteed online. Book at the official Hilton site. Hilton.com

#### Discover Budapest

And The Many Hungarian Cities. Find Places Trains Can Take You. www.RailEurope.com

#### **Budapest** Central Hotel

Central Location, Great Rates Fantastic B&B, Book Online! www.centralbudapesthotels.com

#### Budapest Hatel martman

Hotels, apartrous, pension, Book & stay and post roundfrom 25â,¬! www.destinctionbadapest.hu/

#### **Budapest Vacation Listings**

Thousands of **Vacation** Home Choices Book Directly from Owners & Save! **Vacation**Rentals.com

### Online Ads



#### Online auctions:

- Display ads
- Search Ads

#### Powerful ad:

customized by information about user Search term, History of user, Time of the day, Geographic Data, Cookies, Budget

- Millions of ads each minute, and all different!
- Needs a simple and intuitive scheme

### Model of Sponsored Search

Sponsored Links

# Ordered slots, higher is better

#### Advertisers:

Hilton, RailEurope, CentralBudapestHotels, DestinationBudapest, RacationRentals.com, Travelzoo.com, TravelYahhoo.com, BudgetPlace.com

#### Hilton Hotel Budapest

Our best rates guaranteed online. Book at the official Hilton site. Hilton.com

#### Discover Budapest

And The Many Hungarian Cities. Find Places Trains Can Take You. www.RailEurope.com

#### **Budapest Central Hotel**

Central Location, Great Rates Fantastic B&B, Book Online! www.central**budapest**hotels.com

#### **Budapest Hotel Apartments**

Hotels, apartments, pension, hostel Book & stay **Budapest** room from 25â,¬! www.destination**budapest**.hu/

#### **Budapest Vacation Listings**

Thousands of **Vacation** Home Choices Book Directly from Owners & Save! **Vacation**Rentals.com

#### Vacations to Budapest

Browse the Best Travel Deals to **Budapest** & more. Use Travelzoo!

# Selling one Ad Slot



### Keyword Auction=Matching Problem

#### Version 1

- n ads and n slots
- Each advertiser has a value v<sub>k</sub> per click
- Each slot has click through rate  $\alpha_i$
- Value of slot j for k  $v_{kj} = v_k \alpha_j$



$$\alpha_1 \geq \alpha_2 \geq ... \geq \alpha_n$$

# Maximizing welfare (matching)

- n advertisers and n slots
- Each advertiser
   has a value v<sub>i</sub>
- Click through rate is a;
- $\max \sum_{j} \alpha_{j} v_{j} = total$  value



Assume:

$$v_1 \ge v_2 \ge ... \ge v_n$$
  
 $\alpha_1 \ge \alpha_2 \ge ... \ge \alpha_n$ 

### VCG for AdAuctions

 n advertisers and n slots

Assignment: max total value  $\sum_{i} \alpha_{i} v_{i}$ 

Price paid

pi= welfare loss of others

$$p_i = \sum_{j>i} (\alpha_{j-1} - \alpha_j) v_j$$



Assume: 
$$v_1 \ge v_2 \ge ... \ge v_n$$

$$\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_n$$
  
 $\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_n$ 

### Generalized Second Price (GSP)

- Users bid per click
- Sort by bid
- Charge next lower bid for each click

#### Recall:

Analogous rule for lower slots



### Is GSP truthful?

Is bidding  $b_k = v_k$  Nash equilibrium for the bidders?

### Example:

Bidder 1's value if telling the truth  $(9-5) \cdot 1 = 4$ 

If bidding 
$$b_1 < 5$$
 (9-1)  $\cdot$  0.9 = 7.2



Sort by bid value  $b_1 > b_2 > b_3 > b_4 > ...$ Charge next price  $p=b_{k+1}$ Value to bidder k

$$(v_k - b_{k+1}) \cdot \alpha_k$$

# Measuring efficiency



Social welfare = click · value =  $\sum_{i} v_{i} \alpha_{\sigma(i)}$ 



# Measuring inefficiency

Price of Anarchy = 
$$max_{Nash} = \frac{maxSW}{SW(Nash)}$$



Price of Stability =  $min_{Nash} \frac{maxSW}{SW(Nash)}$ 



Equilibrium selection?

# Full Information: 3 Good equilibria

Theorem [Edelman, Ostrovsky, Schwarz'07 & Varian'06] Envy free equilibria maximize social welfare, and envy free  $\exists$ . (Price of stability 1)

Theorem [Paes Leme, T, FOCS'10] Price of Anarchy bounded by 1.618.

[Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, EC'11] improved to 1.282

True in the full information model only

### Today: a game with uncertainty



Bayesian setting (no efficient Nash) [Gomes, Sweeney 09]

# Keyword Auction with quality factors

#### Version 2

- n ads and n slots
- Each advertiser has a value v<sub>k</sub> per click
- Each slot has click through rate  $\alpha_i$
- "ad-quality" a click through rate  $\gamma_k$
- Click through rate of slot j for k  $\gamma_k \alpha_i$

separable model



• Value of slot j for k  $\gamma_k \mathbf{v}_k \alpha_j$  Effective value

### Generalized Second Price (GSP)

- Users bid per click
- Sort by bid\*γ
- Charge critical price for each click

Value of player k in slot j:

$$k = \pi(j)$$

$$u_k = \alpha_i \gamma_k (v_k - p_k)$$

$$\gamma_k \; p_k = \gamma_{\,\pi(j+1)} \, b_{\,\pi(j+1)}$$



# Uncertainty about Ad Quality



### Model of Uncertain Ad Quality



- valuations fixed (full information) or Bayesian.
- But Ad Quality uncertain, only distribution known (possibly correlated)

### Model with Ad Quality Uncertainty



Nash equilibrium:

$$E[u_k(b_k,b_{-k})] \ge E[u_k(b'_k,b_{-k})]$$

Expectation over participants and quality factors  $\gamma$ 

# Simple proof PoA for welfare

Theorem: [Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, T] Even if values are arbitrarily correlated, the PoA is bounded by 4

### Proof sketch for bound of 4 full info:

- Focus on person i with slot in Opt  $\mu(i)$
- Deviate to  $\frac{1}{2}v_i$  whenever your value is  $v_i$
- Either you get slot  $\mu(i)$  or better and

$$u_i(\frac{1}{2}v_i,b_{-i}) \ge \frac{1}{2}\alpha_{\mu(i)}v_i$$

Assume  $\gamma_i = 1$  all i



### Simple proof PoA for welfare

#### Proof sketch for bound of 4 full info:

- Deviate to  $\frac{1}{2}v_i$  whenever your value is  $v_i$
- either get slot  $\leq \mu(i)$  and  $u_i(\frac{1}{2}v_i,b_{-i}) \geq \frac{1}{2}\alpha_{\mu(i)}v_i$  Or the player in that slot has value  $\geq \frac{1}{2}v_i$

$$\alpha_{\mu(i)} \mathbf{V}_{\sigma^{-1}(\mu(i))} \geq \alpha_{\mu(i)} \frac{1}{2} \mathbf{V}_{i}$$

### Add two options

$$u_i(\frac{1}{2}v_i,b_{-i}) + \alpha_{\mu(i)} v_{\sigma^{-1}(\mu(i))} \ge \frac{1}{2}\alpha_{\mu(i)} v_i$$



# Simple proof PoA for welfare

Theorem: Even if values are arbitrarily correlated, the PoA is bounded by 4

### Proof sketch for bound of 4 Bayesian:

- Deviate to  $\frac{1}{2}v_i$  whenever your value is  $v_i$ 

$$\mathbf{u}_{i}(\frac{1}{2}\mathbf{v}_{i},\mathbf{b}_{-i}) + \alpha_{\mu(i)} \mathbf{v}_{\sigma^{-1}(\mu(i))} \geq \frac{1}{2}\alpha_{\mu(i)} \mathbf{v}_{i}$$

- true for every realization of the random vars
- sum all players, take expectations, use Nash

$$\Sigma_{i}$$
 E(u<sub>i</sub>(v)) +  $\Sigma_{j}$  E( $\alpha_{\sigma(j)}$ v<sub>j</sub>)  $\geq \frac{1}{2}\Sigma_{i}$  E( $\alpha_{\mu(i)}$ v<sub>i</sub>)

NASH + NASH  $\geq \frac{1}{2}$  OPT

# Efficiency of Outcome

Proof idea: deviate to  $\frac{1}{2}v_i$  when your value is  $v_i$ . This is a "no-regret" style bound: don't regret not playing  $\frac{1}{2}v_i$ 

⇒ Bound applies to learning outcomes

If proof uses only "no-regret"-bound then extends to learning outcomes.

If regret only used for  $\frac{1}{2}$   $v_i$  (depends on  $v_i$  only), extends to Bayesian game with correlated types.

# Simple Auction Games

What we have seen so far

- item bidding games simple item bidding
- Generalized Second Price
- Very simple valuations: unit demand or even single parameter

Simple proof technique bounding outcome quality (Nash, Bayesian Nash, learning outcomes)

### References and Better results

- [Christodoulou, Kovacs, Schapira ICALP'08] Price of anarchy of 2 assuming conservative bidding, and fractionally subadditive valuations, independent types
- [Bhawalkar, Roughgarden SODA'10] subaddivite valuations
- [Syrgkanis, T] Improved bound of 3 for unitdemand single value version with correlated types
- [Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes-Leme, T] Improved bound of 2.93 for GSP with uncertainty either Bayesian model or quality factor uncertainty.