Auctions as Games: Equilibria and Efficiency
Near-Optimal Mechanisms

Éva Tardos, Cornell
Games and Quality of Solutions

• Rational selfish action can lead to outcome bad for everyone

Model:
• Value for each cow decreasing function of # of cows
• Too many cows: no value left

Tragedy of the Commons
Good Example: Routing Game

- Traffic subject to congestion delays
- cars and packets follow shortest path

Congestion game = cost (delay) depends only on congestion on edges
Simple vs Optimal

- Simple practical mechanism, that lead to good outcome.
- Optimal outcome is not practical
Simple vs Optimal

• Simple practical mechanism, that lead to good outcome.
• optimal outcome is not practical

Also true in many other applications:

• Need distributed protocol that routers can implement
• Models a distributed process

e.g. Bandwidth Sharing, Load Balancing,
Games with good Price of Anarchy

• Routing:
 • Cars or packets through the Internet

• Bandwidth Sharing:
 • Routers share limited bandwidth between processes

• Facility Location:
 • Decide where to host certain Web applications

• Load Balancing
 • Balancing load on servers (e.g. Web servers)

• Network Design:
 • Independent service providers building the Internet
Today Auction “Games”

Basic Auction: single item Vickrey Auction

Player utility $v_i - p_i$ — item value -price paid

Vickrey Auction (second price) - Truthful
- Efficient
- Simple

Extension VCG (truthful and efficient), but not so simple
Combinatorial Auctions

Buyers have values for any subset S: $v_i(S)$
user utility $v_i(S) - p_i$ — value – price paid

• Efficient assignment: $\max \sum_i v_i(S^*_i)$
over partitions S^*_i

• Payment: welfare loss of others
$p_i = \max \sum_{j \neq i} v_j(S_j) - \sum_{j \neq i} v_j(S^*_j)$

Truthful!
Truthful Auction

Special case: unit demand bidders:

\[v_{ij} = \text{buyer i's value for house j} \]

\[v_i(S) = \max_{j \in S} v_{ij} \]

Assignment: max value matching \(M^* = \{ (i, j^*_i) \} \)

\[\max_{M^*} \sum_i v_{ij^*_i} \]

- \text{price} = \text{welfare loss of others}

\[p_i = \max_{M = \{(k, j_k)\}} \sum_{k \neq i} v_{kj_k} - \sum_{k \neq i} v_{kj_k^*} \]
Truthful Auction

Special case: unit demand bidders:

Assignment: max value matching

$$\max_{M^*} \sum_i v_{ij_i^*}$$

price = welfare loss of others

$$p_i = \max_{M=\{(k,j_k)\}} \sum_{k \neq i} v_{kj_k} - \sum_{k \neq i} v_{kj_k^*}$$

- Requires computation and coordination
- pricing unintuitive
Auctions as Games

simpler auction game are better in many settings.

– analyze simple auctions
– understand which auctions well and which work less well

First idea: simultaneous second price
Auctions as Games

• Simultaneous second price?
 Christodoulou, Kovacs, Schapira ICALP'08
 Bhawalkar, Roughgarden SODA’10
• Greedy Algorithm as an Auction Game
 Lucier, Borodin, SODA’10
• AuAuctions (GSP)
 Paes-Leme, T FOCS’10, Lucier, Paes-Leme + CKKK EC’11
• First price?
 Hassidim, Kaplan, Mansour, Nisan EC’11
• Sequential auction?
 Paes Leme, Syrgkanis, T SODA’12, EC’12

Question: how good outcome to expect?
Simultaneous Second Price
unit demand bidders

• Is simultaneous second price truthful

No!

limited bidding language

How about Nash equilibria?
Nash equilibria of bidding games

Vickrey Auction - Truthful, efficient, simple (second price)

but has many bad Nash equilibria

Assume bid \leq value (higher bid is dominated)

Theorem: all Nash equilibria efficient: highest value winning
Simultaneous Second Price unit demand bidders

Bidding above the item value is dominated:
Assume $b_{ij} \leq v_{ij}$ all i&j.

Question:
How good are Nash equilibria?
Price of Anarchy

Theorem [Christodoulou, Kovacs, Schapira ICALP’08]

Total value $v(N) = \sum_i v_{ij_i}$ at a Nash equilibrium $N = \{(i, j_i)\}$ is at least $\frac{1}{2}$ of optimum $OPT = \max_{M^*} \sum_i v_{ij_i}^*$ (assuming $b_{ij} \leq v_{ij} \forall i \& j$).

Proof Consider the optimum M^*.
If i won j_i^* he has the same value as in OPT
Else, some other player k won j_i^*
Current solution is Nash: i cannot improve his utility by changing his bid
Price of Anarchy

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value \(v(N) = \sum_i v_{iji} \) at a Nash equilibrium \(N = \{(i, j_i)\} \) is at least \(\frac{1}{2} \) of optimum \(\text{OPT} = \max_{M^*} \sum_i v_{iji} \) (assuming \(b_{ij} \leq v_{ij} \ \forall \ i \& j \)).

Proof (cont.) player k won \(j_k = j_i^* \)

player i could bid \(b_{iji} = v_{iji}^* \) and \(b_{ij} = 0 \ \forall j \neq j_i^* \)
- If he wins he gets value \(v_{iji}^* - b_{kji}^* \)
- Else \(v_{iji}^* \leq b_{kji}^* \)

In either case

\[
 v_{iji} \geq v_{iji}^* - b_{kji}^* \geq v_{iji}^* - v_{kjk} \quad \text{(assuming} \ b_{ij} \leq v_{ij} \text{)}
\]

Sum over all players: \(\text{Nash} \geq \text{OPT} - \text{Nash} \)
Unit Demand Bidders: example

Nash value $19 + 1 = 20$
Bids 0, 1, 19, 0
OPT value $20 + 20 = 40$

Inequalities

$1 \geq 20 - 19$ winner of his item has high value at Nash
$19 \geq 20 - 1$ he has high value at Nash

Both “charging” to the same high value at OPT
Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP’08]

Total value $v(N) = \sum_i v_{ij_i}$ at a Nash equilibrium $N = \{(i,j_i)\}$ is at least $\frac{1}{2}$ of optimum $\text{OPT} = \max_{M^*} \sum_i v_{ij_i}^*$ (assuming $b_{ij} \leq v_{ij} \forall i \& j$).

✓ Quality of Nash Equilibria

- What if stable solution is not found?

 Is such a bound possible outside of Nash outcome?

- What if other player’s values are not known

 Is such a bound possible for a Bayesian game?

- Other games?

 Do bounds like this apply other kind of game?
Selfish Outcome (2)?

Is Nash the natural selfish outcome?

How do users coordinate on a Nash equilibrium, e.g., which do they choose?

- Does natural behavior lead to no Nash?
- Which Nash?
- Finding Nash is hard in many games...
- What is natural behavior?
 - Best response?
 - Noisy Best response (e.g. logit dynamic)
 - Learning?
 - Copying others?
Auctions and No-Regret Dynamics

Run Auction on (b_1^1, b_2^1, ..., b_n^1)

Run Auction on (b_1^t, b_2^t, ..., b_n^t)

Vanishingly small regret for any fixed strat x:

\[\sum_t u_i(b_i^t, b_{-i}^t) \geq \sum_t u_i(x, b_{-i}^t) - o(T) \]
Learning:
see Avrim Blum starting Wednesday

Iterated play where users update play based on experience

Traditional Setting: stock market
m experts N options

Goal: can we do as well as the best expert?

Regret = average utility of single best strategy with hindsight - long term average utility.
No Regret Learning

Goal: can we do as well as the best expert? -as the single stock in hindsight?

Idea: if there is a real expert, we should find out who it is after a while.

No regret: too hard (would need to know expert at the start)

Goal: small regret compared to range of cost/benefit
Learning in Games

Goal: can we do (almost) as well as the best expert?

Games?

Focus on a single player: experts = strategies to play

Goal: learn to play the best strategy with hindsight

Best depends on others
Learning in Games

Focus on a single player: experts = strategies to play
Goal: learn to play the best strategy with hindsight

Best depends on others did

Example: matching pennies

With $q=(\frac{1}{2}, \frac{1}{2})$, best value with hindsight is 0.
Regret if our value < 0
Learning in Games

Focus on a single player:
experts = strategies to play

Goal: learn to play the best strategy with hindsight

Best depends on others did

Example: matching pennies

With \(q = (\frac{3}{4}, \frac{1}{4}) \), best value with hindsight is \(\frac{1}{2} \) (by playing top).
Regret if our value < \(\frac{1}{2} \)
Learning and Games
see Avrim Blum starting Wednesday

- **Regret** = average utility of single best strategy with hindsight - long term average utility.

Nash = strategy for each player so that players have no regret

Hart & Mas-Colell: general games \rightarrow Long term average play is (coarse) correlated equilibrium

Simple strategies guarantee vanishing regret.
(Coarse) correlated equilibrium

Coarse correlated equilibrium: probability distribution of outcomes such that for all players expected utility \geq exp. utility of any fixed strategy

Correlated eq. & players independent = Nash

Learning:
Players update independently, but correlate on shared history
Quality of learning outcome

Theorem Unit demand bidders, the total value $v(N) = \sum_i v_{ij_i}$ at a Nash equilibrium $N = \{(i, j_i)\}$ is at least $\frac{1}{2}$ of optimum $\text{OPT} = \max_{M^*} \sum_i v_{ij_i}$ (assuming $b_{ij} \leq v_{ij} \forall i & j$).

How about outcome of no-regret learning (coarse correlated equilibria)?

Same bound applies!

Idea: proof was based on “player i has no regret about one strategy”

bid $b_{ij_i}^* = v_{ij_i}^*$ and $b_{ij} = 0 \forall j \neq j_i^*$

outcome of no-regret learning: no regret about any strategy!
Quality of learning outcome

Theorem Unit demand bidders, the total value $E[v(N)] = E[\sum_i v_{iji}]$ expected value at an outcome distribution $D = \{(i, j_i)\}$ with no regret is $\geq \frac{1}{2}$ of $OPT = \max_{M^*} \sum_i v_{ij_i}^*$ (assuming $b_{ij} \leq v_{ij} \ \forall \ i \& j \& \text{all bids}$).

Proof: player i has no regret about one strategy bid $b_{ij_i}^* = v_{ij_i}^*$ and $b_{ij} = 0 \ \forall j \neq j_i^*$

Price of j_i^* is a bid by an other player $\leq \text{value } v_{ij_i} = \text{value for player } i$

$b_j = \text{bid winning item } j \leq v(j) = \text{value for winner}$

$$E(v_{ij_i}) \geq v_{ij_i}^* - E(b_{ij_i}^*) \geq v_{ij_i}^* - E(v(j_i^*))$$

Sum over all player $E_D(SW) \geq OPT - E_D(SW)$
Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value \(v(N) = \sum_i v_{ij_i} \) at a Nash equilibrium \(N = \{(i,j_i)\} \) is at least \(\frac{1}{2} \) of optimum \(\text{OPT} = \max_{M^*} \sum_i v_{ij_i^*} \) (assuming \(b_{ij} \leq v_{ij} \ \forall \ i & j \)).

✓ Quality of Nash Equilibria

✓ What if stable solution is not found?

 Is such a bound possible outside of Nash outcome?

• What if other player’s values are not known

 Is such a bound possible for a Bayesian game?

• Other games?

 Do bounds like this apply other kind of game?
Bayesian Auction games

Valuations v drawn from distribution F

For simplicity assume for now

- single value v_i for items of interest
- $(v_1, ..., v_n) \in F$ drawn from a joint distribution

- $\text{OPT } i_j^*$ random
- Depends on information i doesn’t have!
Bayesian Price of Anarchy

Theorem Unit demand bidders, the total value \(v(N) = \sum_i v_{ij_i} \) at a Nash equilibrium \(N = \{(i,j_i)\} \) is at least \(\frac{1}{2} \) of optimum \(\text{OPT} = \max_{M^*} \sum_i v_{ij_i^*} \) (assuming \(b_{ij} \leq v_{ij} \forall i,j) \).

How about outcome of Bayesian game?

proof was based on “player i has no regret about one strategy”

- \(b_{ij_i^*} = v_{ij_i^*} \) and \(b_{ij} = 0 \ \forall j \neq j_i^* \)

- **Optimal item** \(j_i^* \) depends on others
- **Player can have no regret about any fixed item j, but not about** \(j_i^* \)
Bayesian Price of Anarchy

Theorem Unit demand single parameter bidders, total expected value $E(v(N)) = E(\sum_{i \in N} v_i)$ at an equilibrium distr. $N = \{(i,j)\}$ (assuming $b_i \leq v_i \forall i$) is at least $\frac{1}{4}$ of the $\text{OPT} = E(\max_M \sum_{i \in M} v_i)$ assuming auction guarantees max one assigned item

proof “player i has no regret about bidding $\frac{1}{2}v_i$”

- If player wins: price $\leq b_i \leq \frac{1}{2}v_i$
 hence utility at least $\frac{1}{2}v_i$
- If he looses, all his items of interest, went to players with bid (and hence value) at least $\frac{1}{2}v_i$.

In either case

$$\frac{1}{2}v_{ij^*} \geq v_{ij} + b_{j^*} \geq v_{ij} + v(j^*)$$

Sum over player, and take expectation over $v \in \mathcal{F}$

$$\frac{1}{2}\text{OPT} \geq E(v(N) + E(v(N)))$$
Our questions

Theorem [Christodoulou, Kovacs, Schapira ICALP’08]

Total value $v(N) = \sum_i v_{ij_i}$ at a Nash equilibrium $N = \{(i, j_i)\}$ is at least $\frac{1}{2}$ of optimum $OPT = \max_{M^*} \sum_i v_{ij_i}^*$ (assuming $b_{ij} \leq v_{ij} \forall i, j$).

- Quality of Nash Equilibria

- What if stable solution is not found?

 Is such a bound possible outside of Nash outcome?

- What if other player’s values are not known

 Is such a bound possible for a Bayesian game?

- Other games?

 Do bounds like this apply other kind of game?
AdAuction

Web Images Video Maps News Shopping Gmail more ▼
ETardos@gmail.com | Web History | My Account | Sign out

Google

Budapest vacation

Search Advanced Search Preferences

Web Show options...

Results 1 - 10 of about 412,000 for Budapest vacation (0.16 seconds)

Private Guided Europe

Budapest Vacation
www.Travelocity.com/Vacations Book Your Trip on Travelocity. We Offer Guaranteed Low Prices.

Sofitel Chic Picnic Offer
www.sofitel.com Book a minimum of 3 nights and get a gourmet picnic basket!

Budapest Vacation Packages - Reviews of Budapest Travel Packages

Budapest Hotel Deals: Find great deals from hundreds of websites, and book the right hotel using TripAdvisor’s 10000 reviews of budapest hotels.
www.tripadvisor.com/Packages-g274887-Vacation-Package-Discount-Budapest.html - 165k - Cached - Similar pages -

Budapest, Hungary - Budapest Travel, Tourism and Vacation Reviews...
Budapest, Hungary: TripAdvisor has 12000 impartial reviews and articles on what to do, where to eat, and where to stay when in Budapest.
www.tripadvisor.com/Tourism-g274887-Budapest-Vacations.html - 76k - Cached - Similar pages -
More results from www.tripadvisor.com »

Hilton Hotel Budapest
Our best rates guaranteed online.
Book at the official Hilton site.
Hilton.com

Discover Budapest
And The Many Hungarian Cities.
Find Places Trains Can Take You.
www.RailEurope.com

Budapest Central Hotel
Central Location, Great Rates
Fantastic B&B, Book Online!
www.centralbudapesthotels.com

Budapest Hotel Apartments
Hotels, apartments, pensions.
Book & stay in Budapest rooms from 35a,-
www.destinationbudapest.hu

Budapest Vacation Listings
Thousands of Vacation Home Choices
Book Directly from Owners & Save!
VacationRentals.com
Online Ads

Online auctions:
• Display ads
• Search Ads

Powerful ad:
customized by information about user
Search term, History of user, Time of the day,
Geographic Data, Cookies, Budget
• Millions of ads each minute, and all different!
• Needs a simple and intuitive scheme
Model of Sponsored Search

Ordered slots, higher is better

Advertisers:
Hilton, RailEurope, CentralBudapestHotels, DestinationBudapest, RacationRentals.com, Travelzoo.com, TravelYahoo.com, BudgetPlace.com
Selling one Ad Slot

Prospective advertisers

- Hilton Hotel Budapest
 - Our best rates guaranteed online.
 - Book at the official Hilton site.
 - $2

- Discover Budapest
 - And The Many Hungarian Cities.
 - Find Places Trains Can Take You.
 - $5

- Budapest Central Hotel
 - Central Location, Great Rates
 - Fantastic B&B, Book Online!
 - $7

- Budapest Hotel Apartments
 - Hotels, apartments, pension, hostel
 - Book & stay Budapest room from 25€!
 - $3

- Budapest Vacation Listings
 - Thousands of Vacation Home Choices
 - Book Directly from Owners & Save!
 - $4

Pays $5

Vickrey Auction

- Truthful
- Efficient
- Simple
- ...

Bids on click value

$\alpha = \text{click rate}$
Keyword Auction = Matching Problem

Version 1
• n ads and n slots
• Each advertiser has a value v_k per click
• Each slot has click through rate α_j

• Value of slot j for k
 $v_{kj} = v_k \cdot \alpha_j$

$\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_n$
Maximizing welfare (matching)

- n advertisers and n slots
- Each advertiser has a value v_i
- Click through rate is α_j
- $\max \sum_j \alpha_j v_j = \text{total value}$

Assume:

\begin{align*}
v_1 &\geq v_2 \geq \ldots \geq v_n \\
\alpha_1 &\geq \alpha_2 \geq \ldots \geq \alpha_n
\end{align*}
VCG for AdAuctions

• n advertisers and n slots

Assignment: max total value $\sum_i \alpha_i v_i$

Price paid
$p_i =$ welfare loss of others

$p_i = \sum_{j>i} (\alpha_{j-1} - \alpha_j) v_j$

Assume:
$v_1 \geq v_2 \geq ... \geq v_n$
$\alpha_1 \geq \alpha_2 \geq ... \geq \alpha_n$
Generalized Second Price (GSP)

- Users bid per click
- Sort by bid
- **Charge next lower bid for each click**

Recall:

Analogous rule for lower slots

Sort by

\[b_{\pi(1)} \geq b_{\pi(2)} \geq ... \geq b_{\pi(n)} \]
Is GSP truthful?

Is bidding $b_k = v_k$ Nash equilibrium for the bidders?

Example:
Bidder 1’s value if telling the truth
$(9-5) \cdot 1 = 4$
If bidding $b_1 < 5$
$(9-1) \cdot 0.9 = 7.2$

Sort by bid value
$b_1 > b_2 > b_3 > b_4 > \ldots$

Charge next price $p = b_{k+1}$

Value to bidder k
$(v_k - b_{k+1}) \cdot \alpha_k$
Measuring efficiency

Social welfare

\[\text{Social welfare} = \text{click} \cdot \text{value} = \sum_i v_i \alpha_{\sigma(i)} \]
Measuring inefficiency

Price of Anarchy $= \max_{\text{Nash}} \frac{\max SW}{SW(\text{Nash})}$

Price of Stability $= \min_{\text{Nash}} \frac{\max SW}{SW(\text{Nash})}$

Equilibrium selection?
Theorem [Edelman, Ostrovsky, Schwarz’07 & Varian’06] Envy free equilibria maximize social welfare, and envy free 3.

(Price of stability 1)

[Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, EC’11] improved to 1.282

True in the full information model only

Full Information: ∃ Good equilibria
Today: a game with uncertainty

Two forms of uncertainty:
- participants
- quality factors

Bayesian setting (no efficient Nash)

[Gomes, Sweeney 09]
Keyword Auction with quality factors

Version 2

- n ads and n slots
- Each advertiser has a value v_k per click
- Each slot has click through rate α_j
- "ad-quality" a click through rate γ_k
- Click through rate of slot j for k $\gamma_k \alpha_j$

separable model

\[
\gamma_1 v_1 \quad \frac{\alpha_1}{\ldots} \\
\gamma_2 v_2 \quad \frac{\alpha_2}{\ldots} \\
\gamma_3 v_3 \quad \frac{\alpha_3}{\ldots} \\
\gamma_4 v_4 \quad \frac{\alpha_4}{\ldots} \\
\gamma_5 v_5 \quad \frac{\alpha_5}{\ldots} \\
\vdots \\
\gamma_k v_k \alpha_j \quad \text{Effective value}
\]
Generalized Second Price (GSP)

- Users bid per click
- Sort by bid $\cdot \gamma$
- Charge critical price for each click

Value of player k in slot j:
$$k = \pi(j)$$

$$u_k = \alpha_j \gamma_k (v_k - p_k)$$

$$\gamma_k p_k = \gamma \pi(j+1) b_{\pi(j+1)}$$

Sort by $\gamma_k b_k$
Uncertainty about Ad Quality

Google

```
pizza
About 1,280,000,000 results (0.14 seconds)
```

Computer via machine learning from

- History of user
- Time of the day
- Geographic Data
- Cookies
- Budget, ...

\[b_k \rightarrow b_k \gamma_k \]
- valuations fixed (full information) or Bayesian.
- But Ad Quality uncertain, only distribution known (possibly correlated)
Model with Ad Quality Uncertainty

\[v_k \] \quad b_k \quad \gamma_k \quad \alpha_j \quad j = \sigma(k) \]

Nash equilibrium:
\[E[u_k(b_k, b_{-k})] \geq E[u_k(b'_k, b_{-k})] \]

Expectation over participants and quality factors \(\gamma \)
Theorem: [Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, T] Even if values are arbitrarily correlated, the PoA is bounded by 4.

Proof sketch for bound of 4 full info:
- Focus on person i with slot in Opt $\mu(i)$
- Deviate to $\frac{1}{2}v_i$ whenever your value is v_i
- Either you get slot $\mu(i)$ or better and

\[u_i(\frac{1}{2}v_i, b_{-i}) \geq \frac{1}{2} \alpha_{\mu(i)} v_i \]

Assume $\gamma_i = 1$ all i
Simple proof PoA for welfare

Proof sketch for bound of 4 full info:
- Deviate to $\frac{1}{2}v_i$ whenever your value is v_i
- either get slot $\leq \mu(i)$ and $u_i(\frac{1}{2}v_i, b_{-i}) \geq \frac{1}{2}\alpha_{\mu(i)} v_i$
- Or the player in that slot has value $\geq \frac{1}{2}v_i$

$$\alpha_{\mu(i)} v_{\sigma^{-1}(\mu(i))} \geq \alpha_{\mu(i)} \frac{1}{2} v_i$$

Add two options

$$u_i(\frac{1}{2}v_i, b_{-i}) + \alpha_{\mu(i)} v_{\sigma^{-1}(\mu(i))} \geq \frac{1}{2}\alpha_{\mu(i)} v_i$$
Simple proof PoA for welfare

Theorem: Even if values are arbitrarily correlated, the PoA is bounded by 4

Proof sketch for bound of 4 Bayesian:
- Deviate to $\frac{1}{2}v_i$ whenever your value is v_i

$$u_i\left(\frac{1}{2}v_i, b_{-i}\right) + \alpha_{\mu(i)} v_{\sigma^{-1}(\mu(i))} \geq \frac{1}{2} \alpha_{\mu(i)} v_i$$

- true for every realization of the random vars
- sum all players, take expectations, use Nash

$$\Sigma_i E(u_i(v)) + \Sigma_j E(\alpha_{\sigma(j)} v_j) \geq \frac{1}{2} \Sigma_i E(\alpha_{\mu(i)} v_i)$$

$$\text{NASH} + \text{NASH} \geq \frac{1}{2} \text{OPT}$$
Efficiency of Outcome

Proof idea: deviate to $\frac{1}{2}v_i$ when your value is v_i.
This is a “no-regret” style bound:
don’t regret not playing $\frac{1}{2}v_i$
\Rightarrow Bound applies to learning outcomes

If proof uses only “no-regret”-bound then extends to learning outcomes.

If regret only used for $\frac{1}{2}v_i$ (depends on v_i only), extends to Bayesian game with correlated types.
Simple Auction Games

What we have seen so far

• item bidding games simple item bidding
• Generalized Second Price
• Very simple valuations: unit demand or even single parameter

Simple proof technique bounding outcome quality (Nash, Bayesian Nash, learning outcomes)
References and Better results

- [Christodoulou, Kovacs, Schapira ICALP’08] Price of anarchy of 2 assuming conservative bidding, and fractionally subadditive valuations, independent types
- [Bhawalkar, Roughgarden SODA’10] subadditive valuations
- [Syrgkanis, T] Improved bound of 3 for unit-demand single value version with correlated types

- [Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes-Leme, T] Improved bound of 2.93 for GSP with uncertainty either Bayesian model or quality factor uncertainty.