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Games and Quality of Solutions

• Rational selfish 
action can lead to 
outcome bad for 
everyone

Tragedy of the Commons

Model:
• Value for each cow 

decreasing function 
of  # of cows

• Too many cows: no 
value left



Good Example: Routing Game

• Traffic subject to congestion delays
• cars and packets follow shortest path
Congestion game =cost (delay) depends only on 
congestion on edges



Simple vs Optimal 

• Simple practical mechanism, that lead to 
good outcome. 

• optimal outcome is not practical



Simple vs Optimal 

• Simple practical mechanism, that lead to 
good outcome. 

• optimal outcome is not practical

Also true in many other applications:
• Need distributed protocol that routers can 

implement
• Models a distributed process 

e.g. Bandwidth Sharing, Load Balancing, 



Games with good Price of Anarchy
• Routing:
• Cars or packets though the Internet

• Bandwidth Sharing:
• routers share limited bandwidth between processes 

• Facility Location:
• Decide where to host certain Web applications

• Load Balancing
• Balancing load on servers (e.g. Web servers)

• Network Design:
• Independent service providers building the Internet 



Today Auction “Games”
Basic Auction: single item Vickrey Auction

Player utility ݒ௜ െ ௜݌  item value –price paid

Vickrey Auction  – Truthful
(second price) - Efficient

- Simple

Extension VCG ( truthful and efficient), 
but not so simple

$2 $5 $7 $3 $4

Pays 
$5



Vickrey, Clarke, Groves
Combinatorial Auctions

Buyers have values for any subset S: vi(S)
user utility vi(S)- pi  value –price paid

• Efficient assignment: max ∑ ௜ݒ	 ܵ∗௜௜
over partitions S*

i
• Payment: welfare loss of others 

pi =max ji vj(Sj)- ௝
∗
௝ji	Truthful!



Truthful Auction
Special case: unit demand bidders:

j

i
vij

vij = buyer i’s value for house j
௜ ௝∈ௌ ௜௝

Assignment: max value 
matching ∗

࢏
∗

ெ∗ ௜௝೔
∗௜

• price = welfare loss of others
௜ ெୀሼ ௞,௝ೖ ሽ ௞௝ೖ௞ஷ௜ ௞௝ೖ

∗௞ஷ௜



Truthful Auction
Special case: unit demand bidders:

i
Assignment: max value 

matching

ெ∗ ௜௝೔
∗௜

price = welfare loss of 
others

௜ ெୀሼ ௞,௝ೖ ሽ ௞௝ೖ௞ஷ௜

௞௝ೖ
∗		௞ஷ௜

• Requires computation and coordination
• pricing unintuitive



Auctions as Games
simpler auction game are better in 

many settings.
– analyze simple auctions
– understand which auctions well and 

which work less well

First idea: simultaneous second price



Auctions as Games
• Simultaneous second price? 

Christodoulou, Kovacs, Schapira ICALP’08
Bhawalkar, Roughgarden SODA’10

• Greedy Algorithm as an Auction Game 
Lucier, Borodin, SODA’10

• AuAuctions (GSP)
Paes-Leme, T FOCS’10, Lucier, Paes-Leme + CKKK EC’11

• First price? 
Hassidim, Kaplan, Mansour, Nisan EC’11

• Sequential auction?
Paes Leme, Syrgkanis, T SODA’12, EC’12

Question: how good outcome to expect? 



Simultaneous Second Price
unit demand bidders

• Is simultaneous second price truthful

No! 
limited bidding language

How about Nash equilibria?

2

2



Nash equilibria of bidding games
Vickrey Auction  - Truthful, efficient, simple
(second price)

but has many bad Nash equilibria

Assume bid value (higher bid is dominated)
Theorem: all Nash equilibria efficient: highest 

value winning

$2 $5 $7 $3 $4

Pays 
$5

$99 $0 $0 $0 $0

Pays 
$0



Simultaneous Second Price
unit demand bidders

Bidding above the item value is dominated: 
Assume bij  vij all ij.

Question: 
How good are Nash equilibria?

2

2



Price of Anarchy
Theorem [Christodoulou, Kovacs, Schapira ICALP’08]
Total value v(N)=∑ ௜௝೔௜ݒ at a Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at 
least ½ of optimum OPT= max

ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

Proof Consider the optimum ܯ∗. 
If i won ݆௜∗	he has the same value as in OPT
Else, some other player k won ݆௜∗
Current solution is Nash: i cannot improve his 
utility by changing his bid

i
݆௜∗

k



Price of Anarchy
Theorem [Christodoulou, Kovacs, Schapira ICALP’08]
Total value v(N)=∑ ௜௝೔௜ݒ at a Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at 
least ½ of optimum OPT= max

ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

Proof (cont.) player k won ݆௞ ൌ ݆௜∗	

i
k

player i could bid	ܾ௜௝೔∗ൌ ∗௜௝೔ݒ and ܾ௜௝ ൌ 0 ∀݆ ് ݆௜∗

- If he wins he gets value ݒ௜௝೔∗ - ܾ௞௝೔∗
- Else ݒ௜௝೔∗  ܾ௞௝೔∗

In either case
௜௝೔ݒ ൒ ∗௜௝ೕݒ െ ܾ௞௝೔∗			

Sum over all players: 

൒ ∗௜௝೔ݒ െ ௞௝ೖ   (assuming ܾ௜௝ݒ ൑ (௜௝ݒ

Nash  OPT - Nash

݆௜∗



Unit Demand Bidders: example

Nash value 19+1=20
Bids 0, 1, 19, 0
OPT value 20+20=40
Inequalities

120-19
19  20-1

20

20
19

Nash

winner of his item has high value at Nash

he has high value at Nash

1

Both “charging” to the same high value at OPT



Our questions
Theorem [Christodoulou, Kovacs, Schapira ICALP’08]
Total value v(N)=∑ ௜௝೔௜ݒ at a Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at 
least ½ of optimum OPT= max

ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

 Quality of Nash Equilibria

• What if stable solution is not found?
Is such a bound possible outside of Nash outcome?

• What if other player’s values are not known
Is such a bound possible for a Bayesian game?

• Other games?
Do bounds like this apply other kind of game?



Selfish Outcome (2)?
Is Nash the natural selfish outcome? 

How do users coordinate on a Nash 
equilibrium, e.g., which do the choose?

• Does natural behavior lead no Nash?
• Which Nash?
• Finding Nash is hard in many games…
• What is natural behavior?

– Best response? 
– Noisy Best response (e.g. logit dynamic)
– learning?
– Copying others? 



Auctions and No-Regret Dynamics

time

b1
1

b2
1

bn
1

…

Run Auction on
( b1

1, b2
1, …, bn

1)
Run Auction on
( b1

t, b2
t, …, bn

t)

b1
2

b2
2

bn
2

…

b1
3

b2
3

bn
3

…

b1
t

b2
t

bn
t

…

Maybe here they don’t 
know how to bid, who are 
the other advertisers, …

By here they have a 
better idea…

Vanishingly small regret for any fixed strat x: 
∑t ui(bi

t, b-i
t) ≥ ∑t ui(x, b-i

t) – o(T)



Learning: 
see Avrim Blum starting Wednesday

Iterated play where users update play based on 
experience

Traditional Setting: stock market
m experts   N options

Goal: can we do as well as the best 
expert?

Regret = average utility of single best 
strategy with hindsight - long term 
average utility. 



No Regret Learning
Goal: can we do as well as the best 
expert?
-as the single stock in hindsight?
Idea: if there is a real expert, we should 
find out who it is after a while.

No regret: too hard (would need to know 
expert at the start)

Goal: small regret compared to range of 
cost/benefit



Learning in Games
Goal: can we do (almost) as well as 
the best expert?
Games?

Focus on a single player: 
experts = strategies to play
Goal: learn to play the best 

strategy with hindsight

Best depends on others…



Learning in Games
Focus on a single player: 
experts = strategies to play
Goal: learn to play the best strategy with 

hindsight
Best depends on others did

Example: matching pennies

-1
1

1
-1

1
-1

-1
1

½     ½
With q=(½ ,½), best 
value with hindsight is 0.
Regret if our value < 0

…



Learning in Games
Focus on a single player: 
experts = strategies to play
Goal: learn to play the best strategy with 

hindsight
Best depends on others did

Example: matching pennies

-1
1

1
-1

1
-1

-1
1

With q=(¾ ,¼), best 
value with hindsight is 
½ (by playing top).
Regret if our value < ½ 

¾      ¼

…



Learning and Games
see Avrim Blum starting Wednesday

• Regret =  average utility of single best 
strategy with hindsight - long term 
average utility. 

Nash = strategy for each player so that 
players have no regret

Hart & Mas-Colell: general games  Long term 
average play is (coarse) correlated equilibrium

Simple strategies guarantee vanishing regret.



(Coarse) correlated equilibrium
Coarse correlated equilibrium: probability 

distribution of outcomes such that for all 
players

expected utility  exp. utility of any fixed 
strategy  

Correlated eq. & players independent = Nash

Learning:
Players update independently, but correlate on 

shared history



Quality of learning outcome
Theorem Unit demand bidders, the total value v(N)=∑ ௜௝೔௜ݒ at a 
Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at least ½ of optimum OPT=
max
ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

How about outcome of no-regret learning (coarse 
correlated equilibria)?

Same bound applies!

Idea: proof was based on “player i has no regret 
about one strategy”

bid	ܾ௜௝೔∗ൌ ∗௜௝೔ݒ and ܾ௜௝ ൌ 0 ∀݆ ് ݆௜∗

outcome of no-regret learning: no regret about any 
strategy!

i
݆௜∗

k



Quality of learning outcome
Theorem Unit demand bidders, the total value E[v(N)]=Eሾ∑ ௜௝೔ሿ௜ݒ
expected value at an outcome distribution D= ሼሺ݅, ݆௜ሻሽ with no regret is 
½ of OPT= max

ெ∗
∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ ij	∀	௜௝ݒ all bids).

Proof: player i has no regret about one strategy
bid	ܾ௜௝೔∗ൌ ∗௜௝೔ݒ and ܾ௜௝ ൌ 0 ∀݆ ് ݆௜∗

Price of ݆௜∗ is a bid by an other player ൑ value
௜௝೔ݒ = value for player i

bj = bid winning item j v(j)= value for winner

ܧ ௜௝೔ݒ ൒ ∗௜௝೔ݒ െ ሺܧ ௝ܾ೔
∗ሻ ൒ ∗௜௝೔ݒ െ ݒሺܧ ݆௜∗ ሻ

Sum over all player ED(SW)  OPT – ED(SW)

i
݆௜∗

k



Our questions
Theorem [Christodoulou, Kovacs, Schapira ICALP’08]
Total value v(N)=∑ ௜௝೔௜ݒ at a Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at 
least ½ of optimum OPT= max

ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

 Quality of Nash Equilibria

 What if stable solution is not found?
Is such a bound possible outside of Nash outcome?

• What if other player’s values are not known
Is such a bound possible for a Bayesian game?

• Other games?
Do bounds like this apply other kind of game?



Bayesian Auction games
Valuations v drawn from distribution F
For simplicity assume for now
• single value vi for items of interest
• (v1, …, vn)F drawn from a joint distribution

v1 • OPT ௝∗ random
• Depends on 

information i
doesn’t have!

v2 

v3 

v4 



Bayesian Price of Anarchy
Theorem Unit demand bidders, the total value v(N)=∑ ௜௝೔௜ݒ at a 
Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at least ½ of optimum OPT=
max
ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

How about outcome of Bayesian game?

proof was based on “player i has no regret about 
one strategy”

bid	ܾ௜௝೔∗ൌ ∗௜௝೔ݒ and ܾ௜௝ ൌ 0 ∀݆ ് ݆௜∗

• Optimal item ݆௜∗ depends on others
• Player can have no regret about any fixed item 

j, but not about ݆௜∗

i



Bayesian Price of Anarchy
Theorem Unit demand single parameter bidders, total expected 
value E(v(N))=E ∑ ௜௜∈ேݒ at an equilibrium distr. ܰ ൌ ሼሺ݅, ݆ሻሽ
(assuming ܾ௜ ൑ ሺmaxܧ=i) is at least ¼ of the OPT	௜∀ݒ

ெ
∑ ௜∈୑	௜ሻݒ 		

assuming auction guarantees max one assigned item 

proof “player i has no regret about bidding ½vi”
• If player wins: price  bi  ½vi

hence utility at least ½vi
• If he looses, all his items of interest, went to 

players with bid (and hence value) at least ½vi.
In either case

ଵ
ଶ
∗௜௝೔ݒ ൒ ௜௝೔ݒ ൅ ௝ܾ೔

∗ ൒ ௜௝೔ݒ ൅ ሺ݆௜∗ሻݒ
Sum over player, and take expectation over vF

½OPT൒ E(v(N)+ E(v(N))

i



Our questions
Theorem [Christodoulou, Kovacs, Schapira ICALP’08]
Total value v(N)=∑ ௜௝೔௜ݒ at a Nash equilibrium ܰ ൌ ሼሺ݅, ݆௜ሻሽ is at 
least ½ of optimum OPT= max

ெ∗ 	∑ ௜௝೔∗௜ݒ (assuming ܾ௜௝ ൑ .(ij	∀	௜௝ݒ

 Quality of Nash Equilibria

 What if stable solution is not found?
Is such a bound possible outside of Nash outcome?

 What if other player’s values are not known
Is such a bound possible for a Bayesian game?

• Other games?
Do bounds like this apply other kind of game?



AdAuction



Online Ads
Online auctions:
• Display ads
• Search Ads

Powerful ad: 
customized by information about user
Search term, History of user, Time of the day, 
Geographic Data, Cookies, Budget

• Millions of ads each minute, and all different!

• Needs a simple and intuitive scheme



Model of Sponsored Search
Ordered slots, higher 

is better

Advertisers:
Hilton, RailEurope, 
CentralBudapestHotels, 
DestinationBudapest, 
RacationRentals.com, 
Travelzoo.com, 
TravelYahhoo.com, 
BudgetPlace.com



Selling one Ad Slot

$2

$5

$7

$3

Pr
os

pe
ct

iv
e 

ad
ve

rt
is

er
s

Boston

$4

Pays $5

Vickrey
Auction
-Truthful
- Efficient
- Simple
- …

α=click rate

Bids on click value



Keyword Auction=Matching Problem

… …
Version 1
• n ads and n slots
• Each advertiser has 

a value vk per click
• Each slot has click 

through rate  αj

• Value of slot j for k 
vkj=vk αj

α1

α2

α3

α4

α5

v1

v2

v4

v5

v3

α 1 ≥ α 2 ≥ … ≥ α n



Maximizing welfare (matching)

… …
• n advertisers and n

slots
• Each advertiser 

has a value vi

• Click through rate 
is αj

• max ∑j αjvj =total 
value

v1

v2

v4

v5

α1

α2

α3

α4

α5

v3

Assume: 
v1 ≥ v2 ≥ … ≥ vn

α 1 ≥ α 2 ≥ … ≥ α n



VCG for AdAuctions

… …
• n advertisers and n

slots
Assignment: max total 
value ௜ ௜௜

Price paid
pi= welfare loss of others

௜ ௝ିଵ ௝ ௝
௝வ௜	

v1

v2

v4

v5

α1

α2

α3

α4

α5

v3

Assume: 
v1 ≥ v2 ≥ … ≥ vn

α 1 ≥ α 2 ≥ … ≥ α n



Generalized Second Price (GSP)

… …
• Users bid per click
• Sort by bid
• Charge next lower 

bid for each click

Recall:

v1

v2

v4

v5

α1

α2

α3

α4

α5

v3

Sort by
bπ(1) ≥ bπ(2) ≥ … ≥ bπ(n)

$2

$5

$7

$3

$4 $2

$5

$0

$4

$3

2 5 7 3 4

Pays 
$5

Analogous rule for 
lower slots



Is GSP truthful?
Is bidding bk = vk Nash 

equilibrium for the 
bidders?

Example:
Bidder 1’s value if 

telling the truth
(9-5) · 1 = 4

If bidding b1 <5 
(9-1) · 0.9 = 7.2

v1

v2

v3

1

0.9

Sort by bid value
b1 > b2 > b3 > b4 >…

Charge next price p=bk+1 

Value to bidder k
(vk –bk+1) ·k

9
5
1

4



Measuring efficiency

vi
αjbi

j = σ(i)

Social welfare 
= click  value = ∑i viασ(i)

σ



Measuring inefficiency

Price of Anarchy =maxNash
maxSW

SW(Nash)

Price of Stability =minNash
maxSW

SW(Nash)

Equilibrium selection?



Theorem [Edelman, Ostrovsky, Schwarz’07 
& Varian’06] Envy free equilibria 
maximize social welfare, and envy free . 
(Price of stability 1)

Theorem [Paes Leme, T, FOCS’10] Price of 
Anarchy bounded by 1.618.
[Caragiannis, Kaklamanis, Kanellopoulos, 
Kyropoulou, EC’11] improved to 1.282

True in the full information model only

Full Information:  Good equilibria



Today: a game with uncertainty

Two forms of 
uncertainty:
• participants 

Bayesian game
• quality factors

Bayesian setting (no efficient Nash) 
[Gomes, Sweeney 09]



Keyword Auction 
with quality factors

… …
Version 2
• n ads and n slots
• Each advertiser 

has a value vk per 
click

• Each slot has click 
through rate  αj

• “ad-quality” a click 
through rate k

• Click through rate 
of slot j for k       

k αj 
separable model

α1

α2

α3

α4

α5

v1

v2

v4

v5

v3

1

3

2

4

5

Effective value
• Value of slot j for k 

kvk αj



Generalized Second Price (GSP)

… …
• Users bid per click
• Sort by bid*
• Charge critical 

price for each click

Value of player k in 
slot j:

k = π(j)
uk =αjk (vk – pk)

v1

v2

v4

v5

α1

α2

α3

α4

α5

v3

Sort by   kbk

$2

$5

$7

$3

$4

k pk =  π(j+1) b π(j+1)

$2

$5

$0

$4

$3

1

3

2

4

5



Uncertainty about Ad Quality

bk bk k

History of user
Time of the day
Geographic Data
Cookies
Budget, …

Computer via machine 
learning from



v1

v2

v3

α1

α2

α3

b1

b2

b3

- valuations fixed (full information) or Bayesian. 
- But Ad Quality uncertain, only distribution known 
(possibly correlated)

Model of Uncertain Ad Quality





Model with Ad Quality Uncertainty

vk
αjbk

j = σ(k)

E[uk(bk,b-k)] ≥ E[uk(b’k,b-k)]  
Nash equilibrium:

Expectation over participants  and 
quality factors 

k



Theorem: [Caragiannis, Kaklamanis, Kanellopoulos, 
Kyropoulou, Lucier, Paes Leme, T] Even if values are 
arbitrarily correlated, the PoA is bounded by 4

Simple proof PoA for welfare

Proof sketch for bound of 4 full info:
- Focus on person i with slot in Opt (i)
- Deviate to ½vi whenever your value is vi
- Either you get slot (i) or better and

ui(½vi,b-i) ½(i)vi vi (i)

Assume
i=1 all i



Simple proof PoA for welfare
Proof sketch for bound of 4 full info:
- Deviate to ½vi whenever your value is vi
- either get slot (i) and ui(½vi,b-i) ½(i) vi
- Or the player in that slot has value ≥ ½vi

v-1((i))  ½ vi(i) (i)

vi (i)

-1((i))

Add two options

ui(½vi,b-i) +(i) v-1((i))  ½(i) vi



Theorem: Even if values are arbitrarily 
correlated, the PoA is bounded by 4

Simple proof PoA for welfare

Proof sketch for bound of 4 :
- Deviate to ½vi whenever your value is vi

ui(½vi,b-i) +(i) v-1((i))  ½(i) vi

- true for every realization of the random vars
- sum all players, take expectations, use Nash

i E(ui(v)) + j E((j)vj)  ½i E((i)vi)
NASH     +     NASH        ½ OPT    

Bayesian



Proof idea: deviate to ½vi when your value is vi

This is a “no-regret” style bound: 
don’t regret not playing ½vi

 Bound applies to learning outcomes

Efficiency of Outcome

If proof uses only “no-regret”-bound then 
extends to learning outcomes.

If regret only used for ½ vi (depends on vi only), 
extends to Bayesian game with correlated types.



Simple Auction Games

What we have seen so far
• item bidding games simple item bidding
• Generalized Second Price
• Very simple valuations: unit demand or 

even single parameter
Simple proof technique bounding outcome 
quality (Nash, Bayesian Nash, learning 
outcomes)



References and Better results
• [Christodoulou, Kovacs, Schapira ICALP’08] Price 

of anarchy of 2 assuming conservative bidding, 
and fractionally subadditive valuations, 
independent types

• [Bhawalkar, Roughgarden SODA’10] subaddivite
valuations

• [Syrgkanis, T] Improved bound of 3 for unit-
demand single value version with correlated types

• [Caragiannis, Kaklamanis, Kanellopoulos, 
Kyropoulou, Lucier, Paes-Leme,T] Improved bound 
of 2.93 for GSP with uncertainty either Bayesian 
model or quality factor uncertainty. 


