Question 1

An Algorithm

The algorithm is a variation of the DFS algorithm taught in class.

The Algorithm: In stage t of the algorithm each of the robots searches all the squares of distance n^t (say, rounded up to the nearest integer). The algorithm ends if the two robots map the same square. The order of the stages is $\frac{1}{2}, \frac{1}{2} + \epsilon, \ldots , 1$. If the algorithm didn’t end at one of the stages we simply search all board.

Notice that the number of stages is at most constant, for every constant $\epsilon > 0$.

Theorem 0.1 The algorithm provides a competitive ratio of $n^{1+\epsilon}$, for any fixed $\epsilon > 0$.

Proof: Suppose that the optimal solution is of distance x. Now, in each stage t each of the robots explores (via the DFS) $O(n^{2t})$ squares (as we have seen in class). If $x \leq \sqrt{n}$ we’ll find a meeting path in the first stage, and get a competitive ratio of $O(n)$.

The total distance traveled up to stage t (including the distance traveled in stage t) is the distance traveled in stage t plus the total distance traveled in all of the previous stages. The total distance traveled in previous stages can be easily upper bounded by $O(n^{2t-2\epsilon})$ (the number of previous stages times the distance traveled in the previous stage). So the total distance up to now is: $O(n^{2t-2\epsilon}) + O(n^{2t}) = O(n^{2t})$. Therefore, if $X \geq n$, the total distance traveled is $O(n^2)$, giving us a competitive ratio of at most $O(n)$.

Else, let t be the minimal stage in the algorithm where $n^t \geq x$. Observe that $n^{t-\epsilon} \leq x \leq n^t$. The competitive ratio is at most $\frac{O(n^{2t})}{n^{t-\epsilon}} = O(n^{t+\epsilon}) = O(n^{1+\epsilon})$, since t takes values between $\frac{1}{2}$ and 1. \qed

A Lower Bound

Similarly to the lower bound presented in class, consider the following instance:
Quick legend: the instance represents an $n \times n$ map, one robot is on the upper left corner, the other one is on the upper right corner (both marked in R). An occupied square is marked in X.

Notice that there are about $\frac{n}{2}$ corridors, and to get to middle of it, a robot need to travel a distance of $\Theta(n)$. If we remove the barrier between the two parts of one of the corridors, we get that the optimal solution is that both robots have to travel together a distance of $\Theta(n)$. However, in order to know which barrier was removed, at least one robot has to travel a distance of $\Theta(n)$. Since there are n corridors, in the worst case the total traveling distance of both robots (in order to find the path) is $\Theta(n^2)$, which gives us a lower bound of $\Omega(n)$ on the competitive ratio, as needed.

Question 2

1. We assume that i is equal to the j-width of the graph, and that the problem is strongly (i,j)-consistent, and we prove that there exists a vertical search order that guarantees j-bounded backtrack search. By definition, there exists a vertical order o on G with j-width i. Let v_l be the l-th variable in o. There exists k, $k \leq j$ and a set v_{l-k+1}, \ldots, v_l of variables that depend on at most i preceding variables v_1, \ldots, v_{m} ($m \leq i$). Since the problem is strongly (i,j)-consistent, it is possible to complete the assignment to v_1, \ldots, v_{m} with some assignment to v_{l-k+1}, \ldots, v_l to a legal assignment to all these $m+k$ variables. This way we are reconsidering only the assignment to $v_{l-k+1}, \ldots, v_{l-1}$ and giving a value to v_l, i.e. we are doing k-bounded backtrack search, and since $k \leq j$, it is also a j-bounded backtrack search. We will be doing such a j-bounded backtrack search for each v_l, and hence, by induction on l, it follows that o guarantees j-bounded backtrack search.

2. A counterexample for the claim: $x \in \{3,5\}$, $y \in \{6,10\}$, $z \in \{3,5\}$. The constraints are $x|y$, $x|z$. The problem is definitely $(1,2)$-consistent, but it is not $(2,1)$-consistent, because if we have an assignment $y = 6$ and $z = 5$, then we cannot add an assignment to x to have a legal assignment to x, y and z.

Question 3

1. We cannot use this algorithm to efficiently manipulate Dodgson’s rule because determining the Dodgson score of a candidate is NP-hard, so in the iterative step of the algorithm it will be NP-hard to determine whether we can place some candidate in the next available spot without preventing p from winning.

2. **The Algorithm:** Let A be the set of candidates that beat a in pairwise elections.

 $l = 0$

 while $A \neq \emptyset$ do
Let S be the set of voters who do not have a on top of their preferences.
All the voters in S push a one place upper
$l = l + |S|$
recalculate A
endwhile
return l

Theorem 0.2 The above algorithm is an n-approximation to the Dodgson score problem.

Proof: Let t be the Dodgson score of a. The algorithm returns (not necessarily the least) number of exchanges between adjacent alternatives which are made till a becomes a Condorcet winner (till $A = \emptyset$), and so the value returned by the algorithm, $l \geq t$. We need to show that $l \leq nt$. Let \succ^* be the profile which is obtained after t optimal exchanges of places between adjacent alternatives such that a is a Condorcet winner in \succ^*. After t iterations of the while loop of the algorithm, a is ranked by every voter i at least as high as in \succ^*, and all the rest candidates are ranked in the same places, and so a will be a Condorcet winner also after t iterations of the algorithm. In each iteration l is growing by at most n, and so after t iterations the algorithm will return $l \leq nt$.

Question 4
We start with some definitions. Player i is *interested* in a piece X if $v_i(X) \geq \frac{1}{3}$. He is *not interested* otherwise. He is *very interested* in X if $v_i(X) \geq \frac{2}{3}$.

The algorithm is as follows. First, some player, without loss of generality player 1, cuts the cake into to equal pieces (from his point of view): A and B. Every player is asked to declare if he is interested, very interested, or not interested at all. The algorithm now branches as follows:

- **There are 2 players that are interested in A, and the other two are interested in B:** In this case we run the equal-share protocol\(^1\) described in class on each side (with the corresponding two players). Each player is left with a piece that worth $\frac{1}{6}$ to him, as the equal-share protocol guarantees each player at least half of the value of the whole part, which was at least $\frac{1}{3}$.

- **There are 3 players that are very interested in the same piece (wlog, A):** In that case we use the following sub-protocol: player 1 gets B. Player 2 cuts A into A_1 and A_2 both have the same value for him (so he is interested in both). Now players 3 and 4 declare if they are interested in A_1 or in A_2. Notice that they are interested in at least one of A_1 and A_2, since they are very interested in A. If both 2 and 3 are interested in the same piece, we give 2 the other piece, and use the equal-share protocol to divide between 2 and 3 the piece are interested in. Clearly all players get a piece that has a value of at least $\frac{1}{6}$ to them. Else, share using the equal-share protocol the piece that 2 and 3 are interested in, and give 3 the other one. Again, all players receive a piece that they value with at least $\frac{1}{6}$.

Simple case enumeration shows that the cases complement each other, as it is easy to see that given a partition of the cake into two pieces each player is either interested in both parts, or very interested in one part, and since the player 1 is interested in both parts.

\(^1\)One player cuts the part into two equal pieces, the other one chooses the more valuable piece.