FAIR DIVISION 4: INDIVISIBLE GOODS
Indivisible goods

- Set G of m goods
- Each good is indivisible
- Players $N = \{1, \ldots, n\}$ have arbitrary valuations V_i for bundles of goods
- Envy-freeness and proportionality are infeasible!
Minimizing envy

- Given allocation A, denote

 $$e_{ij}(A) = \max\{0, V_i(A_j) - V_i(A_i)\}$$

 $$e(A) = \max\{e_{ij}(A): i, j \in N\}$$

- Theorem [Nisan and Segal 2002]: Every protocol that finds an allocation minimizing $e(A)$ must use an exponential number of bits of communication in the worst case.
Communication complexity

- Protocol defined by a binary tree
- Complexity is the height of the tree
- Complexity of a problem is the height of the shortest tree
Proof of theorem

• Let \(m = 2k \)

• \(\mathcal{F} \) is a set of functions s.t. for all \(V \in \mathcal{F}, \ S \subseteq G, \)

\[
V(S) = \begin{cases}
1 & |S| > k \\
0 & |S| < k \\
1 - V(G \setminus S) & |S| = k
\end{cases}
\]

• \(|\mathcal{F}| = 2^{\binom{m}{k}} \)

Proof of theorem

• Suppose $n = 2$, and denote a valuation profile by $(U, V) \in \mathcal{F}^2$

• Lemma: Suppose $U \in \mathcal{F}, V \in \mathcal{F} \setminus \{U\}$, then the sequence of bits transmitted on input (U, U) is different from the sequence transmitted on (V, V)

• Assume the lemma is true, then there must be at least $|\mathcal{F}|$ sequences, and the height of the tree must be at least $\log |\mathcal{F}| = \binom{m}{k}/2$
Proof of lemma

- Assume not; then \((U, V)\) and \((V, U)\) generate the same sequence
\[(U, U)\]

\[(V, V)\]

\[(U, V)\]
Proof of lemma

• If $U \neq V$, $\exists T \subset G$ such that $U(T) = 1$, $V(T) = 0$
• The allocation $(T, G \setminus T)$ is EF for (U, V), $(G \setminus T, T)$ is EF for (V, U)
• Given (U, V), protocol produces an EF $(S, G \setminus S) \Rightarrow U(S) = 1$, $V(G \setminus S) = 1$
• $(S, G \setminus S)$ is also returned on (V, U), but is not EF
Approximate EF

- Define the maximum marginal utility
 \[\alpha = \max \{ V_i(S \cup \{x\}) - V_i(S) : i, x, S \} \]
- Theorem [Lipton et al. 2004]: An allocation with \(e(A) \leq \alpha \) can be found in polynomial time
- Note: we are still not assuming anything about the valuation functions!
Proof of Theorem

• Given allocation A, we have an edge (i, j) in its envy graph if i envies j

• Lemma: Given partial allocation A with envy graph G, can find allocation B with acyclic envy graph H s.t. $e(B) \leq e(A)$
Proof of lemma

• If G has a cycle C, shift allocations along C to obtain A'; clearly $e(A') \leq e(A)$

• #edges in envy graph of A' decreased:
 o Same edges between $N \setminus C$
 o Edges from $N \setminus C$ to C shifted
 o Edges from C to $N \setminus C$ can only decrease
 o Edges inside C decreased

• Iteratively remove cycles ■
Proof of theorem

• Maintain envy $\leq \alpha$ and acyclic graph
• In round 1, allocate good g_1 to arbitrary agent
• g_1, \ldots, g_{k-1} are allocated in acyclic A
• Derive B by allocating g_k to source i
• $e_{ji}(B) \leq e_{ji}(A) + \alpha = \alpha$
• Use lemma to eliminate cycles ■
EF CAKE CUTTING, REVISITED

• Want to get ϵ-EF cake division

• Agent i makes $1/\epsilon$ marks $x_1^i, \ldots, x_{1/\epsilon}^i$ such that for every k, $V_i([x_k^i, x_{k+1}^i]) = \epsilon$

• If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$

• Now we can apply the theorem

• Need n/ϵ cut queries and n^2/ϵ eval queries
An even simpler solution

• Relies on **additive** valuations
• Create the “indivisible goods” like before
• Agents choose pieces in a round-robin fashion: $1, \ldots, n, 1, \ldots, n, \ldots$
• Each good chosen by agent i is preferred to the next good chosen by agent j
• This may not account for the first good g chosen by j, but $V_i(\{g\}) \leq \epsilon$
Maximin share guarantee

• Let us focus on indivisible goods and additive valuations
• Communication complexity is not an issue
• But computational complexity is
• Observation: Deciding whether there exists an EF allocation is NP-hard, even for two players with identical additive valuations
Maximin Share Guarantee

| Total:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$30</td>
<td>$50</td>
<td>$20</td>
<td>$30</td>
<td>$30</td>
<td>$50</td>
<td>$20</td>
<td>$30</td>
</tr>
<tr>
<td>$30</td>
<td>$50</td>
<td>$5</td>
<td>$5</td>
<td>$3</td>
<td>$5</td>
<td>$3</td>
<td>$5</td>
</tr>
</tbody>
</table>

Total:
- $30
- $50
- $20
- $30
- $30
- $50
- $20
- $30

15896 Spring 2016: Lecture 9
• Maximin share (MMS) guarantee [Budish, 2011] of player i:
 \[\max_{x_1, \ldots, x_n} \min_j V_i(X_j) \]

• Theorem [P & Wang, 2014]: $\forall n \geq 3$ there exist additive valuation functions that do not admit an MMS allocation
Counterexample for $n = 3$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>25</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>3</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>21</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
Counterexample for $n = 3$

$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \times 10^6 + \begin{bmatrix} 17 & 25 & 12 & 1 \\ 2 & 22 & 3 & 28 \\ 11 & 0 & 21 & 23 \end{bmatrix} \times 10^3 + \begin{bmatrix} 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Player 1

$\begin{bmatrix} 3 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Player 2

$\begin{bmatrix} 3 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$

Player 3
• Maximin share (MMS) guarantee [Budish, 2011] of player i:

$$\max_{x_1,\ldots,x_n} \min_j V_i(X_j)$$

• Theorem [P & Wang, 2014]: \(\forall n \geq 3\) there exist additive valuation functions that do not admit an MMS allocation

• Theorem [P & Wang, 2014]: It is always possible to guarantee each player \(2/3\) of his MMS guarantee