CMU 15-896
Noncooperative games 3: Price of anarchy

Teacher: Ariel Procaccia
Back to prison

- The only Nash equilibrium in Prisoner’s dilemma is bad; but how bad is it?
- Objective function: social cost = sum of costs
- NE is six times worse than the optimum

<table>
<thead>
<tr>
<th></th>
<th>Cooperate</th>
<th>Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperate</td>
<td>-1,-1</td>
<td>-9,0</td>
</tr>
<tr>
<td>Defect</td>
<td>0,-9</td>
<td>-6,-6</td>
</tr>
</tbody>
</table>
Anarchy and Stability

- Fix a class of games, an objective function, and an equilibrium concept
- The price of anarchy (stability) is the worst-case ratio between the worst (best) objective function value of an equilibrium of the game, and that of the optimal solution
- In this lecture:
 - Objective function = social cost
 - Equilibrium concept = Nash equilibrium
Example: Cost sharing

- \(n \) players in weighted directed graph \(G \)
- Player \(i \) wants to get from \(s_i \) to \(t_i \); strategy space is \(s_i \rightarrow t_i \) paths
- Each edge \(e \) has cost \(c_e \)
- Cost of edge is split between all players using edge
- Cost of player is sum of costs over edges on path
Example: Cost sharing

- With n players, the example on the right has an NE with social cost n
- Optimal social cost is 1
- \Rightarrow Price of anarchy $\geq n$

Prove that the price of anarchy is at most n
Example: Cost sharing

- Think of the 1 edges as cars, and the k edge as mass transit
- Bad Nash equilibrium with cost n
- Good Nash equilibrium with cost k
- Now let’s modify the example...
Example: Cost sharing

- OPT = $k + 1$
- Only equilibrium has cost $k \cdot H(n)$
- \Rightarrow price of stability is at least $\Omega(\log n)$
- We will show that the price of stability is $\Theta(\log n)$
Potential games

A game is an exact potential game if there exists a function $\Phi: \prod_{i=1}^{n} S_i \rightarrow \mathbb{R}$ such that for all $i \in N$, for all $s \in \prod_{i=1}^{n} S_i$, and for all $s_i' \in S_i$,

$$\text{cost}_i(s_i', s_{-i}) - \text{cost}_i(s) = \Phi(s_i', s_{-i}) - \Phi(s)$$

Why does the existence of an exact potential function imply the existence of a pure Nash equilibrium?
Potential games

- Theorem: the cost sharing game is an exact potential game

- Proof:
 - Let $n_e(s)$ be the number of players using e under s
 - Define the potential function
 $$\Phi(s) = \sum_e \sum_{k=1}^{n_e(s)} \frac{c_e}{k}$$
 - If player changes paths, pays $\frac{c_e}{n_e(s)+1}$ for each new edge, gets $\frac{c_e}{n_e(s)}$ for each old edge, so $\Delta \text{cost}_i = \Delta \Phi$ ■
Potential games

• Theorem: The cost of stability of cost sharing games is $O(\log n)$

• Proof:
 o It holds that
 \[\text{cost}(s) \leq \Phi(s) \leq H(n) \cdot \text{cost}(s) \]
 o Take a strategy profile s that minimizes Φ
 o s is an NE
 o $\text{cost}(s) \leq \Phi(s) \leq \Phi(\text{OPT}) \leq H(n) \cdot \text{cost(OPT)}$
Cost sharing summary

• In every cost sharing game
 o \forallNE s, $\text{cost}(s) \leq n \cdot \text{cost(OPT)}$
 o \existsNE s such that $\text{cost}(s) \leq H(n) \cdot \text{cost(OPT)}$

• There exist cost sharing games s.t.
 o \existsNE s such that $\text{cost}(s) \geq n \cdot \text{cost(OPT)}$
 o \forallNE s, $\text{cost}(s) \geq H(n) \cdot \text{cost(OPT)}$
Congestion games

• Generalization of cost sharing games
• n players and m resources
• Each player i chooses a set of resources (e.g., a path) from collection S_i of allowable sets of resources (e.g., paths from s_i to t_i)
• Cost of resource j is a function $f_j(n_j)$ of the number n_j of players using it
• Cost of player is the sum over used resources
Congestion games

- Theorem [Rosenthal 1973]: Every congestion game is an exact potential game

- Proof: The exact potential function is

 \[\Phi(s) = \sum_j \sum_{i=1}^{n_j(s)} f_j(i) \]

- Theorem [Monderer and Shapley 1996]: Every potential game is isomorphic to a congestion game
Network formation games

• Each player is a vertex \(v \)
• Strategy of \(v \): set of undirected edges to build that touch \(v \)
• Strategy profile \(s \) induces undirected graph \(G(s) \)
• Cost of building any edge is \(\alpha \)
• \(\text{cost}_v(s) = \alpha n_v(s) + \sum_u d(u, v) \), where \(n_v = \) #edges bought by \(v \), \(d \) is shortest path in #edges
• \(\text{cost}(s) = \sum_{u \neq v} d(u, v) + \alpha |E| \)
Example: Network formation

• NE with $\alpha = 3$

Suboptimal

Optimal
Example: Network formation

• **Lemma:** If \(\alpha \geq 2 \) then any star is optimal, and if \(\alpha \leq 2 \) then a complete graph is optimal

• **Proof:**
 - Suppose \(\alpha \leq 2 \), and consider any graph that is not complete
 - Adding an edge will decrease the sum of distances by at least 2, and costs only \(\alpha \)
 - Suppose \(\alpha \geq 2 \) and the graph contains a star, so the diameter is at most 2; deleting a non-star edge increases the sum of distances by at most 2, and saves \(\alpha \)

\[\square\]
Example: Network formation

Poll: For which values of α is any star a NE, and for which is the complete graph a NE?

1. $\alpha \geq 1, \alpha \leq 1$
2. $\alpha \geq 2, \alpha \leq 1$
3. $\alpha \geq 1$, none
4. $\alpha \geq 2$, none
Example: Network formation

- Theorem:
 1. If $\alpha \geq 2$ or $\alpha \leq 1$, PoS = 1
 2. For $1 < \alpha < 2$, PoS $\leq 4/3$

- Proof:
 - Part 1 is immediate from the lemma and poll
 - For $1 < \alpha < 2$, the star is a NE, while OPT is a complete graph
 - Worst case ratio when $\alpha \to 1$:
 \[
 \frac{2n(n - 1) - (n - 1)}{n(n - 1) + n(n - 1)/2} = \frac{4n^2 - 6n + 2}{3n^2 - 3n} < \frac{4}{3}
 \]
Example: Network creation

- Theorem [Fabrikant et al. 2003]: The price of anarchy of network creation games is $O(\sqrt{\alpha})$

- Lemma: If s is a Nash equilibrium that induces a graph of diameter d, then $\text{cost}(s) \leq O(d) \cdot \text{OPT}$
Proof of lemma

• $\text{OPT} = \Omega(\alpha n + n^2)$

 o Buying a connected graph costs at least $(n - 1)\alpha$

 o There are $\Omega(n^2)$ distances

• Distance costs $\leq dn^2 \Rightarrow$ focus on edge costs

• There are at most $n - 1$ cut edges \Rightarrow focus on noncut edges
Proof of lemma

- **Claim:** Let $e = (u, v)$ be a noncut edge, then the distance $d(u, v)$ with e deleted $\leq 2d$
 - $V_e =$ set of nodes s.t. the shortest path from u uses e
 - Figure shows shortest path avoiding e, $e' = (u', v')$ is the edge on the path entering V_e
 - P_u is the shortest path from u to $u' \Rightarrow |P_u| \leq d$
 - $|P_v| \leq d - 1$ as $P_v \cup e$ is shortest path from u to v'
Proof of lemma

• Claim: There are $O(nd/\alpha)$ noncut edges paid for by any vertex u
 o Let $e = (u, v)$ be an edge paid for by u
 o By previous claim, deleting e increases distances from u by at most $2d|V_e|$.
 o G is an equilibrium $\Rightarrow \alpha \leq 2d|V_e| \Rightarrow |V_e| \geq \alpha / 2d$
 o n vertices overall \Rightarrow can’t be more than $2nd/\alpha$
 sets V_e ■
Proof of lemma

- $O(nd/\alpha)$ noncut edges per vertex
- $O(nd)$ total payment for these per vertex
- $O(n^2d)$ overall
Proof of theorem

• By lemma, it is enough to show that the diameter at a NE $\leq 2\sqrt{\alpha}$
• Suppose $d(u, v) \geq 2k$ for some k
• By adding the edge (u, v), u pays α and improves distance to second half of the $u \rightarrow v$ shortest path by
 $$(2k - 1) + (2k - 3) + \cdots + 1 = k^2$$
• If $d(u, v) > 2\sqrt{\alpha}$, it is beneficial to add edge