Kidney Exchange

Donor 1 → Patient 2
Donor 2 → Patient 1

Donor 1
Patient 1

Donor 2
Patient 2
Incentives

- A decade ago kidney exchanges were carried out by individual hospitals.
- Today there are nationally organized exchanges; participating hospitals have little other interaction.
- It was observed that hospitals match easy-to-match pairs internally, and enroll only hard-to-match pairs into larger exchanges.
- Goal: incentivize hospitals to enroll all their pairs.
The strategic model

• Undirected graph (only pairwise matches!)
 o Vertices = donor-patient pairs
 o Edges = compatibility
 o Each player controls subset of vertices
• Mechanism receives a graph and returns a matching
• Utility of player = # its matched vertices
• Target: # matched vertices
• Strategy: subset of revealed vertices
 o But edges are public knowledge
• Mechanism is strategyproof (SP) if it is a dominant strategy to reveal all vertices
OPT is manipulable
OPT is manipulable
Approximating SW

- Theorem [Ashlagi et al. 2010]: No deterministic SP mechanism can give a $2 - \epsilon$ approximation
- Proof: We just proved it!
- Theorem [Kroer and Kurokawa 2013]: No randomized SP mechanism can give a $\frac{6}{5} - \epsilon$ approximation
- Proof: Homework 2
SP mechanism: Take 1

• Assume two players

• The \text{MATCH}_{\{1\},\{2\}} mechanism:

 o Consider matchings that maximize the number of “internal edges”

 o Among these return a matching with max cardinality
Another example

\[\text{Diagram showing connected nodes with checks.} \]
Guarantees

- \text{MATCH}_{\{1\},\{2\}} \text{ gives a 2-approximation}
 - Cannot add more edges to matching
 - For each edge in optimal matching, one of the two vertices is in mechanism’s matching

- Theorem (special case): \text{MATCH}_{\{1\},\{2\}} \text{ is strategyproof for two players}
Proof of theorem

- \(M \) = matching when player 1 is honest, \(M' \) = matching when player 1 hides vertices
- \(M \Delta M' \) consists of paths and even-length cycles, each consisting of alternating \(M, M' \) edges

What’s wrong with the illustration on the right?
Proof of theorem

- Consider a path in $M \Delta M'$, denote its edges in M by P and its edges in M' by P'
- For $i, j \in \{1,2\}$,
 \[P_{ij} = \{ (u, v) \in P : u \in V_i, v \in V_j \} \]
 \[P'_{ij} = \{ (u, v) \in P' : u \in V_i, v \in V_j \} \]
- $|P_{11}| \geq |P'_{11}|$, suppose $|P_{11}| = |P'_{11}|$
- It holds that $|P_{22}| = |P'_{22}|$
- M is max cardinality $\Rightarrow |P_{12}| \geq |P'_{12}|$
- $U_1(P) = 2|P_{11}| + |P_{12}| \geq 2|P'_{11}| + |P'_{12}| = U_1(P')$
Proof of theorem

- Suppose $|P_{11}| > |P'_{11}|$
- $|P_{12}| \geq |P'_{12}| - 2$
 - Every subpath within V_2 is of even length
 - We can pair the edges of P_{12} and P'_{12}, except maybe the first and the last
- $U_1(P) = 2|P_{11}| + |P_{12}| \geq 2(|P'_{11}| + 1) + |P'_{12}| - 2 = U_1(P')$
The case of 3 players
SP mechanism: Take 2

• Let $\Pi = (\Pi_1, \Pi_2)$ be a bipartition of the players

• The MATCH_Π mechanism:

 o Consider matchings that maximize the number of “internal edges” and do not have any edges between different players on the same side of the partition

 o Among these return a matching with max cardinality (need tie breaking)
Eureka?

- Theorem [Ashlagi et al. 2010]: MATCHΠ is strategyproof for any number of players and any partition Π
- Recall: for $n = 2$, MATCH$\{{1}\},\{{2}\}$ guarantees a 2-approx
Eureka?

Poll 1: approximation guarantees given by MATCH_Π for $n = 3$ and $\Pi = \{\{1\}, \{2,3\}\}$?

1. 2
2. 3
3. 4
4. More than 4
The mechanism

- The MIX-AND-MATCH mechanism:
 - Mix: choose a random partition Π
 - Match: Execute MATCH_Π
- Theorem [Ashlagi et al. 2010]: MIX-AND-MATCH is strategyproof and guarantees a 2-approximation
- We only prove the approximation ratio
Proof of theorem

- $M^* =$ optimal matching
- Create a matching M' such that M' is max cardinality on each V_i, and
 \[
 \sum_i |M'_{ii}| + \frac{1}{2} \sum_{i \neq j} |M'_{ij}| \geq \sum_i |M^*_{ii}| + \frac{1}{2} \sum_{i \neq j} |M^*_{ij}|
 \]
 - $M^{**} =$ max cardinality on each V_i
 - For each path P in $M^* \Delta M^{**}$, add $P \cap M^{**}$ to M' if M^{**} has more internal edges than M^*, otherwise add $P \cap M^*$ to M'
 - For every internal edge M' gains relative to M^*, it loses at most one edge overall \(\blacksquare\)
Proof of theorem

• Fix Π and let M^Π be the output of MATCH_Π

• The mechanism returns max cardinality across Π subject to being max cardinality internally, therefore

$$\sum_i |M^\Pi_{ii}| + \sum_{i \in \Pi_1, j \in \Pi_2} |M^\Pi_{ij}| \geq \sum_i |M'_i| + \sum_{i \in \Pi_1, j \in \Pi_2} |M'_{ij}|$$
Proof of theorem

\[
E[|M^\Pi|] = \frac{1}{2^n} \sum_{\Pi} \left(\sum_i |M_{ii}| + \sum_{i \in \Pi_1, j \in \Pi_2} |M_{ij}| \right)
\geq \frac{1}{2^n} \sum_{\Pi} \left(\sum_i |M'_{ii}| + \sum_{i \in \Pi_1, j \in \Pi_2} |M'_{ij}| \right)
= \sum_i |M'_{ii}| + \frac{1}{2^n} \sum_{\Pi} \sum_{i \in \Pi_1, j \in \Pi_2} |M'_{ij}|
= \sum_i |M'_{ii}| + \frac{1}{2} \sum_{i \neq j} |M'_{ij}| \geq \sum_i |M^*_{ii}| + \frac{1}{2} \sum_{i \neq j} |M^*_{ij}|
\geq \frac{1}{2} \sum_i |M^*_{ii}| + \frac{1}{2} \sum_{i \neq j} |M^*_{ij}| = \frac{1}{2} |M^*| \quad \square
\]