15896 Spring 2015 Homework \#3:
 Matching and Noncooperative Games

Ariel Procaccia (arielpro@cs.cmu.edu)

Due: 4/7/2015 1:30pm

Rules:

- You may work with a friend on the problems if you want. If you do work with a friend, please submit a single solution.
- If you've seen a problem before (some of them are "famous"), then say that in your solution. Also, if you use any sources other than the AGT book, write that down too. Please don't deliberately search for solutions online! It's fine to look up a complicated sum or inequality or whatever, but don't look up an entire solution.
- Please prepare a pdf with your solution and send it to me by email.

Problems:

1. [20 points] In the CYCLE COVER problem, we are given a directed graph and two integers k, t; we are asked whether it is possible to cover at least t vertices with disjoint cycles of length at most k. We stated in class (lecture 15, slide 11) that the Cycle Cover problem is NP-hard when there is a given upper bound k on the length of cycles. Show that if there is no such upper bound then the problem can be solved in polynomial time.
Hint: You may rely on the fact that a maximum weight perfect matching in a bipartite graph can be computed in polynomial time.
2. [25 points] We proved in class (lecture 16, slides 5-7) that when there are at least two players, no deterministic strategyproof kidney exchange mechanism can provide an α-approximation for $\alpha<2$. Show that no randomized strategyproof kidney exchange mechanism can provide an α-approximation for $\alpha<6 / 5$.
Hint: You can use exactly the same examples we used in class to establish the deterministic case.
3. Consider the following scheduling game. The players $N=\{1, \ldots, n\}$ are associated with tasks, each with weight w_{i}. There is also a set M of m machines. Each player chooses a machine to place his task on, that is, the strategy space of each agent is M. A strategy profile induces an assignment $A: N \rightarrow M$ of agents (or tasks) to machines; the cost of player i is the total load on the machine to which i is assigned $-\ell_{A(i)}=\sum_{j \in N: A(j)=A(i)} w_{j}$. Our objective function is the makespan, which is the maximum load on any machine: $\operatorname{cost}(A)=\max _{\mu \in M} \ell_{\mu}$. It is known that scheduling games always have pure Nash equilibria.
(a) [35 points] Let G be a scheduling game with n tasks of weight w_{1}, \ldots, w_{n}, and m machines. Let $A: N \rightarrow M$ be a Nash equilibrium assignment. Then

$$
\operatorname{cost}(A) \leq\left(2-\frac{2}{m+1}\right) \cdot \operatorname{opt}(G)
$$

That is, the (pure) price of anarchy is at most $2-2 /(m+1)$.
(b) [20 points] Prove that the upper bound of part (a) is tight, by constructing an appropriate family of scheduling games for each $m \in \mathbb{N}$.

