Games are an abstraction
Aim to identify most important decisions of participants and main factors in payoffs.
- But there are always low-order unmodeled factors or variables.
- And some players whose incentives not modeled well at all.

High-level question: How much impact can these issues have on dynamics in the system?

Games are an abstraction
We’d like to think that if we get people into a good equilibrium, and players are selfish, reasonably myopic, etc, then behavior will stay there.

But what if there are small fluctuations in underlying cost/payoff structure? Could they cause natural dynamics to spin out of control?

Games are an abstraction
We’d like to think that if we get people into a good equilibrium, and players are selfish, reasonably myopic, etc, then behavior will stay there.

But what if there are small fluctuations in underlying cost/payoff structure? Could they cause natural dynamics to spin out of control?

Games are an abstraction
We’d like to think that if we get people into a good equilibrium, and players are selfish, reasonably myopic, etc, then behavior will stay there.

Can small fluctuations or a few unpredictable players act unpredictably?

Or what about a few players acting unpredictably?
High-level question

A few ways this could happen:
- Small changes cause good equilibria to disappear, only bad ones left. (economy?)
- Bad behavior by a few players causes pain for all (nukes)
- Neither of above, but instead through more subtle interaction with dynamics...

Can small fluctuations or a few unpredictable players cause natural dynamics to get system into a high-cost state? Focus here on this last issue.

Focus of this work

Games with the following properties:
- Potential games, best/better-response dynamics.
- Small gap between potential and social cost.
 - Without fluctuations, can walk away from good state even if not an equilibrium: gap bounds possible increase.
 - Single perturbation can't make dynamics do bad things.

Focus of this work

Games with the following properties:
- Potential games, best/better-response dynamics.
- Small gap between potential and social cost.
- No individual player can influence total cost of others by too much. (With Byzantine players, will define social cost as sum of costs to others)

Focus of this work

Games with the following properties:
- Potential games, best/better-response dynamics.
- Example: set-cover games.
 - n players, m resources, with costs $c_1, ..., c_m$.
 - Each player allowed to use some resources, not others.
 - Each player chooses some allowable resource.
 - Players split cost with all others choosing same one.

$$\text{cost}(S) = \sum_{i=1}^{m} c_i$$

$$\phi(S) = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}$$

Model

- Players follow best (or better) response dynamics.
- Costs of resources can fluctuate between moves: $c_i^{t} \in [c_i, c_i(1+\varepsilon)]$
- Alternatively, one/few Byzantine players who move between time steps
- Play begins in a low-cost state.
- How bad can things get?

Price-of-Uncertainty(ε) of game = maximum ratio of eventual social cost to initial cost.
Model

- Players follow best (or better) response dynamics.
- Costs of resources can fluctuate between moves: \(c^i_t \in [c_i, c_i(1+\epsilon)] \)

Price-of-Uncertainty(\(\epsilon\)) of game = maximum ratio of eventual social cost to initial cost.

Set-cover games

- \(n \) players, \(m \) resources. Each player chooses one of allowable resources. Players split cost with all others choosing same one.
- Price of anarchy = \(n \)
- Potential \(\Phi \in [\text{cost, cost-log(n)}] \)

Main results

General fair-cost-sharing games:
- If many players for each \((s_i,t_i)\) pair \((n_i = \Omega(m))\), then \(\text{PoU} = O(1) \) even for constant \(\epsilon > 0 \).
- Open for general number of players.

Matroid congestion games: (strategy sets are bases of matroid. E.g., set-cover where choose \(k \) resources)
- If \(\epsilon = O(1/nm) \) then \(\text{PoU} = O(\log n) \) for fair cost-sharing.
- In general, if \(\epsilon = O(1/nm) \) then \(\text{PoU} = O(GAP) \).

These require Best-Response. Better-resp not enough
Also results for \(\beta \)-nice games, job scheduling, …
Set-Cover games (lower bound)
A single Byzantine player can take state from a PNE of cost $O(OPT)$ to one of cost $\Omega(n \cdot OPT)$.

Set-Cover games (lower bound)
Two kinds of players:
- n of Class I:
- $n-1$ of Class II:

Plus one Byzantine player...

- Implies bound for case that costs can fluctuate by factor of 2. More complicated ex for $\varepsilon \rightarrow 1/n^{1/2}$.

Set-Cover games (upper bound)
For upper bound, think of players in sets as a stack of chips.
- View ith position in stack j as having cost c_j/i. Load chips with value equal to initial cost.
- When player moves from j to k, move top chip. Cost of position goes up by at most $(1+\varepsilon)$.
- At most mn different positions. So, following the path of any chip and removing loops, cost of final set is at most $(1+\varepsilon)^{nm}$ times its value.

So, if $\varepsilon = O(1/nm)$ then PoU = $O(\log n)$.

Matroid games
In matroid games, can think of each player as controlling a set of chips.
- Nice property of best response in matroids:
 - Can always order the move so that each individual chip is doing better-response.
 - Apply previous argument.
 - Fails for better-response.
 - Here, can get player to do kind of binary counting, bad even for exponentially-small ε.

Fair cost sharing in general graphs
If many players of each type, can also show best-response dynamics can't do badly.

Outline of argument:
- Hard to analyze cost of state directly, instead track upper bound $c^*(S_t) = \text{cost}(S_0 \cup ... \cup S_t)$.
 - c^* changes at most m times.
 - Many players of each type \Rightarrow average cost of each is low compared to $c^* \Rightarrow$ each change to c^* is small.

Because it can never be a BR move to switch to something of cost $\times (1+\varepsilon)$ times average for type.
PoU versus Price of Anarchy

Main focus: games with both good and bad equilibria.
- Can small fluctuations or single Byzantine player cause behavior to move from good to bad?
- Can also have cases where state can get worse even than worst equilibrium.
- Market-sharing: 2 vs log(n) even for best-response.

PoU versus Price of Anarchy

\(\beta\)-nice games [AAEMS-EC08]: incentives grow stronger as cost gets above \(\beta\) times optimal (typically \(\beta = \text{PoA}\)).
- \(2\Delta(S) > \text{cost}(S) - \beta \text{OPT}, \quad \Delta(S) = \sum_i \Delta_i(S)\).
- Here, at least can show state won't get above \(O(\beta)\) times optimal, even with substantial perturbation or many Byzantine players (random order).

Subsequent results

[Balcan, Constantin, Ehrlich]

- Set-cover games:
 - Upper bound with dependence only on \(m\), not \(n\).
 - Lower bound under random move-ordering.
- Consensus games:
 - Nearly-tight bounds on effect of \(\varepsilon\)-perturbations
 - Tight bounds on effect of \(B\) Byzantine players.

Summary and open problems

Looking at: when can small perturbations or a few bad players lead natural dynamics astray?
- When is it safe to turn your back?
- Upper/lower bounds for a number of classes of games.

Open problems:
- General case of fair cost-sharing games?
- Analyze time to failure for random fluctuations?
- Instance-based analysis?