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Games are an abstraction 
Aim to identify most important decisions of 

participants and main factors in payoffs.  
– But there are always low-order unmodeled 

factors or variables. 

– And some players whose incentives not modeled 
well at all. 

 

High-level question: How much impact can 
these issues have on dynamics in the  
system? 

We’d like to think that if we get people into a good 
equilibrium, and players are selfish, reasonably 
myopic, etc, then behavior will stay there. 

 

 
 

 
 
 

But what if there are small fluctuations in underlying 
cost/payoff structure? Could they cause natural 
dynamics to spin out of control? 

Games are an abstraction 

We can safely walk away and 
be confident the system will 

stay in a good state 

We’d like to think that if we get people into a good 
equilibrium, and players are selfish, reasonably 
myopic, etc, then behavior will stay there. 

 

 

 

 

 

But what if there are small fluctuations in underlying 
cost/payoff structure? Could they cause natural 
dynamics to spin out of control? 

Games are an abstraction 
We’d like to think that if we get people into a good 

equilibrium, and players are selfish, reasonably 
myopic, etc, then behavior will stay there. 

 

 

 

 

 

Or what about a few players acting unpredictably? 

Can small fluctuations or a few unpredictable players 
cause natural dynamics to get system into a high-
cost state? 

Games are an abstraction 
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High-level question 
 

 

 

A few ways this could happen: 
– Small changes cause good equilibria to disappear, only 

bad ones left.     (economy?) 

– Bad behavior by a few players causes pain for all (nukes) 

– Neither of above, but instead through more subtle 
interaction with dynamics… 

Focus here on this last issue. 

Can small fluctuations or a few unpredictable players 
cause natural dynamics to get system into a high-
cost state? 

Focus of this work 
Games with the following properties: 

• Potential games, best/better-response dynamics. 
– These games have non-negative potential function ©(S) 

such that if any player moves, say reducing his cost by D, 
then © decreases by D too. 

– Better-response dynamics will reach equilibrium. 

– And the maximum gap between ©(S) and cost(S) bounds 
how bad a state can get if no fluctuations. 

cost 

potential 
gap 

Focus of this work 
Games with the following properties: 

• Potential games, best/better-response dynamics. 

• Small gap between potential and social cost. 
– Without fluctuations, can walk away from good state 

even if not an equilibrium: gap bounds possible increase. 

– Single perturbation can’t make dynamics do bad things. 

 

cost 

potential 
gap 

Focus of this work 
Games with the following properties: 

• Potential games, best/better-response dynamics. 

• Small gap between potential and social cost. 

• No individual player can influence total cost of 
others by too much. (With Byzantine players, will 
define social cost as sum of costs to others.) 

Focus of this work 
Games with the following properties: 

• Potential games, best/better-response dynamics. 
– Example: set-cover games. 

• n players, m resources, with costs c1,…,cm. 

• Each player allowed to use some resources, not others. 

 

 

 
 

 

• Each player chooses some allowable resource. 

• Players split cost with all others choosing same one. 

c1 c2 c3 cm 
Cost(S) = 

©(S) = 

Model 
• Players follow best (or better) response dynamics. 

• Costs of resources can fluctuate between moves: 
ci

t 2 [ci, ci(1+)] 

• Alternatively, one/few Byzantine players who move 
between time steps 

• Play begins in a low-cost state. 

• How bad can things get? 

Price-of-Uncertainty() of game = maximum 
ratio of eventual social cost to initial cost. 
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Model 
• Players follow best (or better) response dynamics. 

• Costs of resources can fluctuate between moves: 
ci

t 2 [ci, ci(1+)] 

  

Price-of-Uncertainty() of game = maximum 
ratio of eventual social cost to initial cost. 

Model 
• Players follow best (or better) response dynamics. 

• Costs of resources can fluctuate between moves: 
ci

t 2 [ci, ci(1+)] 

Price-of-Uncertainty() of game = maximum 
ratio of eventual social cost to initial cost. 

One way to look at this: 
• Define graph: one node for each state.  Edge u ! v 

if perturbation can cause BR to move from u to v. 

• Does reachable set contain state of high cost 
compared to start? 

Set-cover games 
• n players, m resources.  Each player chooses one of 

allowable resources.  Players split cost with all others 
choosing same one. 

• Price of anarchy = n 

 

 

• Potential  2  [cost, cost¢log(n)] 

 

 

 

 

n-d 1 

1+d 1/4 1/3 1/2 

Main results 
Set-cover games: 
Good news: 
• If  = O(1/nm) then PoU = O(log n). 

Bad news: 
• For =1, PoU = (n).  For any constant , PoU = (n1/2) 

• Also, a single Byzantine player can take state from 
a PNE of cost O(OPT) to one of cost (n¢OPT). 

Upper bounds hold even for better-response 

Lower bounds hold even for best-response 

Main results 
General fair-cost-sharing games: 
• If many players for each (si,ti) pair (ni = (m)),  

then PoU = O(1) even for constant  >0. 

• Open for general number of players. 

s t 1 1 
2 s 2 t 

Main results 
General fair-cost-sharing games: 
• If many players for each (si,ti) pair (ni = (m)),  

then PoU = O(1) even for constant  >0. 
 

Matroid congestion games: (strategy sets are 
bases of matroid. E.g., set-cover where choose k resources) 

• If  = O(1/nm) then PoU = O(log n) for fair cost-
sharing. 

• In general, if  = O(1/nm) then PoU = O(GAP). 

These require Best-Response. Better-resp not enough 

Also results for -nice games, job scheduling, … 
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Set-Cover games (lower bound) 

A single Byzantine player can take state from a 
PNE of cost O(OPT) to one of cost (n¢OPT). 

Set-Cover games (lower bound) 

Two kinds of players: 
• n of Class I: 

 

 

 

 

 

• n-1 of Class II: 

 

Plus one Byzantine player… 
 Implies bound for case that costs can fluctuate by 

factor of 2.  More complicated ex for  ! 1/n1/2. 

n 

n-d n-d n-d n-d n-d 

n/2 n/3 n/4 … n/n 

Set-Cover games (upper bound) 

For upper bound, think of players in sets 
as a stack of chips. 

• View ith position in stack j as having 
cost cj/i.  Load chips with value equal 
to initial cost. 

• When player moves from j to k, move 
top chip.  Cost of position goes up by 
at most (1+). 

cj ck 

• At most mn different positions.   So, following 
the path of any chip and removing loops, cost of 
final set is at most (1+)nm times its value. 

So, if  = O(1/nm) then PoU = O(log n). 

Matroid games 
In matroid games, can think of each player as 

controlling a set of chips. 
 

• Nice property of best                         
response in matroids: 

– Can always order the move so that each 
individual chip is doing better-response. 

• Apply previous argument. 

• Fails for better-response. 

– Here, can get player to do kind of binary 
counting, bad even for exponentially-small . 

Fair cost sharing in general graphs 
If many players of each type, can also show best-

response dynamics can’t do badly. 
 

s t 1 1 
2 s 2 t 

Fair cost sharing in general graphs 
If many players of each type, can also show best-

response dynamics can’t do badly. 
 

Outline of argument: 

• Hard to analyze cost of state directly, instead 
track upper bound c*(St) = cost(S0 [ … [ St). 

– c* changes at most m times. 
 

• Many players of each type ) average cost of each 
is low compared to c* ) each change to c* is small. 

Because it can never be a BR move to switch to 
something of cost >  (1+) times average for type. 
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PoU versus Price of Anarchy 
Main focus: games with both good and bad equilibria. 

• Can small fluctuations or single Byzantine player 
cause behavior to move from good to bad? 

Can also have cases where state can get worse even 
than worst equilibrium. 

• Market-sharing: 2 vs log(n) even for best-response. 

PoU versus Price of Anarchy 
-nice games [AAEMS-EC08] : incentives grow 

stronger as cost gets above  times optimal 
(typically  = PoA). 

• 2¢(S) ¸ cost(S) - ¯ OPT,  ¢(S) = i ¢i(S). 

• Here, at least can show state won’t get above O() 
times optimal, even with substantial perturbation or 
many Byzantine players (random order). 

• Set-cover games: 
– Upper bound with dependence only on m, not n. 

– Lower bound under random move-ordering. 

• Consensus games: 
– Nearly-tight bounds on effect of -perturbations 

– Tight bounds on effect of B Byzantine players. 

Subsequent results 
 

[Balcan, Constantin, Ehrlich] 

Summary and open problems 
Looking at: when can small perturbations or a few bad 

players lead natural dynamics astray? 

• When is it safe to turn your back? 

• Upper/lower bounds for a number 
of classes of games. 

Open problems: 

• General case of fair cost-sharing games? 

• Analyze time to failure for random fluctuations?  

• Instance-based analysis? 


