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Motivation 

• Firm is marketing a new product 
• Collect data on the social network 
• Choose set 𝑆 of early adopters and market 

to them directly 
• Customers in 𝑆 generate a cascade of 

adoptions 
• Question: How to choose 𝑆? 
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Influence functions 

• Assume: finite graph, progressive process 
• Fixing a cascade model, define influence function 
• 𝑓 𝑆 = expected #active nodes at the end of the 

process starting with 𝑆 
• Maximize 𝑓(𝑆) over sets 𝑆 of size 𝑘 
• Theorem [Kempe et al. 2003]: Under the 

general cascade model, influence maximization is 
NP-hard to approximate to a factor of 𝑛1−𝜖 for 
any 𝜖 > 0 
 
 3 



𝑥𝑖 

Proof of theorem 
• SET COVER: subsets 𝑆1, … , 𝑆𝑚 of 
𝑈 = 𝑢1, … ,𝑢𝑡 ; cover of size 𝑘? 

• Bipartite graph: 𝑢1, … ,𝑢𝑡 on one side, 
𝑆1, … , 𝑆𝑚 and 𝑥1, … , 𝑥𝑇 for T = 𝑡𝑐 on 
the other 

• 𝑢𝑖 becomes active if 𝑆𝑗 ∋ 𝑢𝑖 is active 
• 𝑥𝑗 becomes active if 𝑢1, … ,𝑢𝑡 are active 
• Min set cover of size 𝑘 ⇒ 𝑇 + 𝑡 + 𝑘 

covered 
• Min set cover of size > 𝑘 ⇒ < 𝑡 + 𝑘 

active ∎ 
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Submodularity for approximation 

• Try to identify broad subclasses where good approx is 
possible 

• 𝑓 is submodular if for 𝑋 ⊆ 𝑌, 𝑣 ∉ 𝑌, 
𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌) 

• 𝑓 is monotone if for 𝑋 ⊆ 𝑌,𝑓 𝑋 ≤ 𝑓(𝑌) 
• Reduction gives 𝑓 that is not submodular 
• Theorem [Nemhauser et al. 1978]: 𝑓 monotone and 

submodular, 𝑆∗ optimal 𝑘-element subset, 𝑆 obtained by 
greedily adding 𝑘 elements that maximize marginal 
increase; then  

𝑓 𝑆 ≥ 1 −
1
𝑒

𝑓(𝑆∗) 
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independent cascade model 

• Reminder of model: 
o For each 𝑢, 𝑣 ∈ 𝐸 there is a weight 𝑝𝑢𝑢 
o When a node 𝑢 becomes activated it has one chance 

to activate each neighbor 𝑣 with probability 𝑝𝑢𝑢  
• Theorem [Kempe et al. 2003]: Under the 

independent cascade model: 
o Influence maximization is NP-hard 
o The influence function 𝑓 is submodular 

• We prove the theorem on the board 
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Linear threshold model 
• Reminder of model: 

o Nonnegative weight 𝑤𝑢𝑢 for each edge 
𝑢, 𝑣 ∈ 𝐸; 𝑤𝑢𝑢 = 0 otherwise 

o Assume ∀𝑣 ∈ 𝑉, ∑ 𝑤𝑢𝑢 ≤ 1𝑢  
o Each 𝑣 ∈ 𝑉 has threshold 𝜃𝑣 chosen 

u.a.r. in [0,1] 
o 𝑣 becomes active if  

� 𝑤𝑢𝑢 ≥ 𝜃𝑣
active 𝑢

 

• Vote: What is 𝑓(𝑆)? 
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Linear threshold model 

• Vote: Given that 𝑢 is inactive,  
prob. that it becomes active when 𝑣 
becomes active 

• Theorem [Kempe et al. 2003]: 
Under the linear threshold model: 
o Influence maximization is NP-hard 
o The influence function 𝑓 is submodular 

• We prove the theorem on the  
board 
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Progressive vs. nonprogressive 

• Nonprogressive threshold 
model is identical except that 
at each round 𝑣 chooses 𝜃𝑣𝑡 
u.a.r. in [0,1] 

• Suppose process runs for 𝑇 
steps 

• At each step 𝑡 ≤ 𝑇, can target 
𝑣 for activation; 𝑘 
interventions overall 

• Goal: ∑ #rounds 𝑣 was active𝑣  
• Reduces to progressive case  
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