

CMU 15-896

SOCIAL NETWORKS:

INFLUENCE MAXIMIZATION

TEACHERS:

ÁVRIM BLUM

ÁRIEL PROCACCIA (THIS TIME)

MOTIVATION

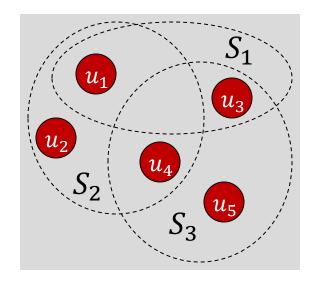
- Firm is marketing a new product
- Collect data on the social network
- Choose set S of early adopters and market to them directly
- Customers in S generate a cascade of adoptions
- Question: How to choose S?

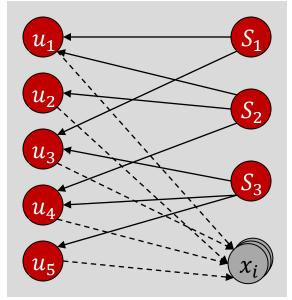
INFLUENCE FUNCTIONS

- Assume: finite graph, progressive process
- Fixing a cascade model, define influence function
- f(S) = expected #active nodes at the end of the process starting with S
- Maximize f(S) over sets S of size k
- Theorem [Kempe et al. 2003]: Under the general cascade model, influence maximization is NP-hard to approximate to a factor of $n^{1-\epsilon}$ for any $\epsilon > 0$

PROOF OF THEOREM

- SET COVER: subsets $S_1, ..., S_m$ of $U = \{u_1, ..., u_t\}$; cover of size k?
- Bipartite graph: $u_1, ..., u_t$ on one side, $S_1, ..., S_m$ and $x_1, ..., x_T$ for $T = t^c$ on the other
- u_i becomes active if $S_i \ni u_i$ is active
- x_j becomes active if $u_1, ..., u_t$ are active
- Min set cover of size $k \Rightarrow T + t + k$ covered
- Min set cover of size $> k \Rightarrow < t + k$ active \blacksquare





SUBMODULARITY FOR APPROXIMATION

- Try to identify broad subclasses where good approx is possible
- f is submodular if for $X \subseteq Y, v \notin Y$, $f(X \cup \{v\}) f(X) \ge f(Y \cup \{v\}) f(Y)$
- f is monotone if for $X \subseteq Y$, $f(X) \le f(Y)$
- Reduction gives f that is not submodular
- Theorem [Nemhauser et al. 1978]: f monotone and submodular, S^* optimal k-element subset, S obtained by greedily adding k elements that maximize marginal increase; then

$$f(S) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$

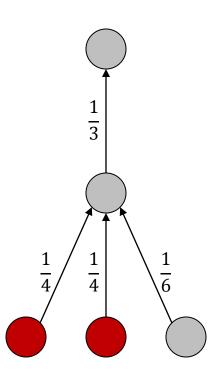
INDEPENDENT CASCADE MODEL

- Reminder of model:
 - For each $(u, v) \in E$ there is a weight p_{uv}
 - When a node u becomes activated it has one chance to activate each neighbor v with probability p_{uv}
- Theorem [Kempe et al. 2003]: Under the independent cascade model:
 - Influence maximization is NP-hard
 - \circ The influence function f is submodular
- We prove the theorem on the board

LINEAR THRESHOLD MODEL

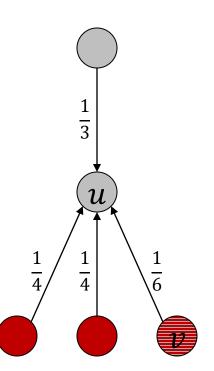
- Reminder of model:
 - Nonnegative weight w_{uv} for each edge $(u, v) \in E$; $w_{uv} = 0$ otherwise
 - \circ Assume $\forall v \in V$, $\sum_{u} w_{uv} \leq 1$
 - Each $v \in V$ has threshold θ_v chosen u.a.r. in [0,1]
 - \circ v becomes active if

$$\sum_{\text{active } u} w_{uv} \ge \theta_v$$



LINEAR THRESHOLD MODEL

- Vote: Given that u is inactive, prob. that it becomes active when v becomes active
- Theorem [Kempe et al. 2003]: Under the linear threshold model:
 - Influence maximization is NP-hard
 - \circ The influence function f is submodular
- We prove the theorem on the board



PROGRESSIVE VS. NONPROGRESSIVE

- Nonprogressive threshold model is identical except that at each round v chooses θ_v^t u.a.r. in [0,1]
- Suppose process runs for *T* steps
- At each step $t \le T$, can target v for activation; k interventions overall
- Goal: \sum_{ν} #rounds ν was active
- Reduces to progressive case

