

CMU 15-896

FAIR DIVISION:

COMPLEXITY AND APPROXIMATION

TEACHERS:

AVRIM BLUM

ARIEL PROCACCIA (THIS TIME)

COMPLEXITY REVISITED

- Robertson-Webb model
 - $_{\circ} \quad \text{Eval}_{i}(x, y) = V_{i}([x, y])$
 - $\operatorname{Cut}_i(x,\alpha) = y \text{ s.t. } V_i([x,y]) = \alpha$
- Even-Paz is proportional and requires
 O(n logn) queries
- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol requires $\Omega(n \log n)$ queries
- We prove the theorem on the board

APPROXIMATE ENVY-FREENESS

- There is no known bounded envy-free (EF) protocol
- Can "efficiently" obtain ϵ -EF:

$$V_i(A_i) \ge V_i(A_j) - \epsilon$$

- Approach: ϵ -EF allocation of indivisible goods
- Setting: m goods, $V_i(S)$ denotes the value of agent $i \in N$ for the bundle S

BOUNDED EF

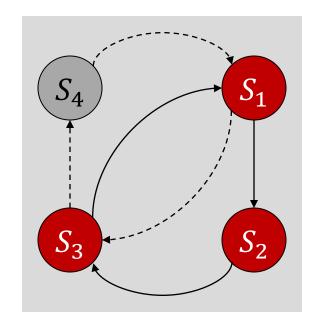
- Given allocation A, denote $e_{ij}(A) = \max\{0, V_i(A_j) V_i(A_i)\}$ $e(A) = \max\{e_{ij}(A) : i, j \in N\}$
- Define the maximum marginal utility $\alpha = \max\{V_i(S \cup \{x\}) V_i(S): i, S, x\}$
- Theorem [Lipton et al. 2004]: An allocation with $e(A) \leq \alpha$ can be found in polynomial time

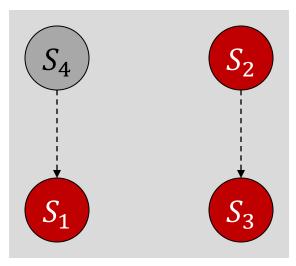
PROOF OF THEOREM

- Given allocation A, we have an edge (i, j) in its envy graph if i envies j
- Lemma: Given partial allocation A with envy graph G, can find allocation B with acyclic envy graph H s.t. $e(B) \le e(A)$

PROOF OF LEMMA

- If G has a cycle C, shift allocations along C to obtain A'; clearly $e(A') \leq e(A)$
- #edges in envy graph of A' decreased:
 - \circ Same edges between $N \setminus C$
 - \circ Edges from $N \setminus C$ to C shifted
 - \circ Edges from \mathcal{C} to $N \setminus \mathcal{C}$ can only decrease
 - Edges inside C decreased
- Iteratively remove cycles





PROOF OF THEOREM

- Maintain envy $\leq \alpha$ and acyclic graph
- In round 1, allocate good g_1 to arbitrary agent
- g_1, \ldots, g_{k-1} are allocated in acyclic A
- Derive B by allocating g_k to source i
- $e_{ii}(B) \le e_{ii}(A) + \alpha = \alpha$
- Use lemma to eliminate cycles

BACK TO CAKES

- Agent i makes $1/\epsilon$ marks $x_1^i, \dots, x_{1/\epsilon}^i$ such that for every k, $V_i([x_k^i, x_{k+1}^i]) = \epsilon$
- If intervals between consecutive marks are indivisible goods then $\alpha \leq \epsilon$
- Now we can apply the theorem
- Need n/ϵ cut queries and n^2/ϵ eval queries

AN EVEN SIMPLER SOLUTION

- Relies on additive valuations
- Create the "indivisible goods" like before
- Agents choose pieces in a round-robin fashion: 1, ..., n, 1, ..., n, ...
- Each good chosen by agent i is preferred to the next good chosen by agent j
- This may not account for the first good g chosen by j, but $V_i(\{g\}) \leq \epsilon$