

CMU 15-896

SOCIAL CHOICE:
VOTING RULES AS MLES

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

HISTORY

- For Condorcet [1785], the object of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- For m=2 the majority opinion will very likely be correct
- Realistic in trials by jury or the pooling of expert opinions — or in human computation!

MOTIVATION: ETERNA

- Developed at CMU (Adrien Treuille) and Stanford
- Choose 8 RNA designs to synthesize
- Some designs are truly more stable than others
- The goal of voting is to compare the alternatives by true quality

CONDORCET'S NOISE MODEL

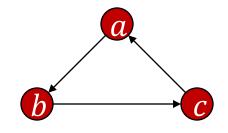
- True ranking of the alternatives
- Voting pairwise on alternatives, each comparison is correct with prob. p > 1/2
- Results are tallied in a voting matrix

	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-

CONDORCET'S 'SOLUTION'

- Condorcet's goal: find "the most probable" ranking
- Condorcet suggested: take the majority opinion for each comparison; if a cycle forms, "successively delete the comparisons that have the least plurality"
- In example, we delete c > a to get a > b > c

	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-



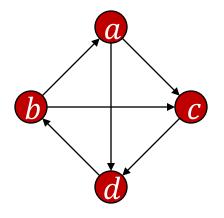
CONDORCET'S 'SOLUTION'

- With four alternatives we get ambiguities
- In example, order of strength is c > d, a > d, b > c, a > c, d > b. b > a

	u /	D,	D /	u		
•	Dele	ete	<i>b</i> >	$a \Rightarrow$	still	cycle

• Delete $d > b \Rightarrow$ either a or b could be top-ranked

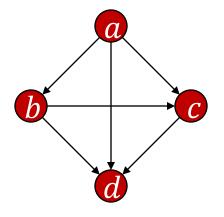
	а	b	С	d
а	-	12	15	17
b	13	1	16	11
С	10	9	-	18
d	8	14	7	-



CONDORCET'S 'SOLUTION'

- Did Condorcet mean we should reverse the weakest comparisons?
- Reverse b > a and $d > b \Rightarrow$ we get a > b > c > d, with 89 votes
- b > a > c > d has 90 votes (only reverse d > b)

	а	b	С	d
а	-	12	15	17
b	13	1	16	11
С	10	9	-	18
d	8	14	7	-



EXASPERATION?

- "The general rules for the case of any number of candidates as given by Condorcet are stated so briefly as to be hardly intelligible . . . and as no examples are given it is quite hopeless to find out what Condorcet meant" [Black, 1958]
- "The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ... no amount of examples can convey an adequate impression of the evils" [Todhunter 1949]

YOUNG'S SOLUTION

• Suppose true ranking is a > b > c; prob of observations:

$$\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{11} p^{11} (1-p)^2$$

• For a > c > b prob. is:

$$\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{2} p^2 (1-p)^{11}$$

\sim \sim \sim		• 1	. 1
Coefficients	are	iden:	tical

•	Exponent of p is $\#$ agreements,
	exponent of $1 - p$ is #disagreements

	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-

Young's solution

- M = matrix of votes
- $\Pr[>|M] = \frac{\Pr[M|>] \cdot \Pr[>]}{\Pr[M]}$
- Assume uniform prior over >, $\Pr[>] = \frac{1}{m!}$
- Must maximize $\Pr[M| >]$, do this by minimizing #disagreements with observed votes on pairs of alternatives
- This is the Kemeny rule (NP-hard!)

CONDORCET VS. BORDA

- Borda was a contemporary of Condorcet
- Noted for work in hydraulics, mechanics, optics, and the design of navigational instruments
- His voting rule was used by the French Academy of Sciences
- Condorcet held Borda's work in low esteem, but...

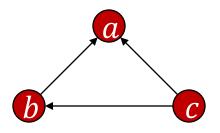
WHICH ALTERNATIVE IS BEST?

- The top-ranked alternative of the MLE ranking may not be the most likely best alternative
- c > b > a is MLE ranking
- c is best if c > a and c > b
- Let M_{xy} be the votes for x, y

•
$$\Pr[c > a | M_{ca}] = \frac{p^{31}(1-p)^{29}}{p^{31}(1-p)^{29} + p^{29}(1-p)^{31}}$$

•
$$\Pr[c > b | M_{cb}] = \frac{p^{31}(1-p)^{29}}{p^{31}(1-p)^{29} + p^{29}(1-p)^{31}}$$

	а	b	С
а	ı	23	29
b	37	-	29
С	31	31	ı



WHICH ALTERNATIVE IS BEST?

•
$$\Pr[c|M_{ca} \land M_{cb}] = \frac{[p^{31}(1-p)^{29}]^2}{[p^{31}(1-p)^{29}+p^{29}(1-p)^{31}]^2}$$

•
$$\Pr[b|M_{ba} \land M_{bc}] = \frac{p^{37}(1-p)^{23}p^{29}(1-p)^{31}}{[p^{37}(1-p)^{23}+p^{23}(1-p)^{37}]\cdot[p^{29}(1-p)^{31}+p^{31}(1-p)^{29}]}$$

•
$$\Pr[a|M_{ab} \land M_{ac}] = p^{23}(1-p)^{37}p^{29}(1-p)^{31}$$

 $p^{23}(1-p)^{37}+p^{37}(1-p)^{23}]\cdot[p^{29}(1-p)^{31}+p^{31}(1-p)^{29}]$

• Vote: who is best when $p \sim 1$?

WHICH ALTERNATIVE IS BEST?

- What about $p \sim 1/2$?
- Theorem [Young 1995]: When p is sufficiently close to $\frac{1}{2}$, Borda is MLE for the best alternative (assuming individual rankings)

Vote:	who	is	the	Borda
winne	r?			

	а	b	С
а	-	23	29
b	37	-	29
С	31	31	_

TEN YEARS LATER...

- Noise model = distribution over preference profiles for each true winner/ranking
- Which voting rules have a noise model for which they are MLEs of the true ranking (MLER) or true winner (MLEW)? [Conitzer and Sandholm, 2005
- Vote: Neutral rule is MLER/MLEW for some noise model?
- Assume: votes are i.i.d.
- We focus on MLEWs

SCORING RULES AS MLEWS

- Theorem |Conitzer and Sandholm **2005**]: any scoring rule is an MLEW.
- Proof:
 - \circ w = true winner
 - The probability that a voter *i* ranks *w* in position $r_i(w)$ is proportional to $2^{s_{r_i(w)}}$, and the other alternatives are ranked randomly
 - $\circ \text{Pr}[M|w] \propto \prod_{i=1}^{n} 2^{s_{r_i(w)}} = 2^{\sum s_{r_i(w)}} \blacksquare$

MAXIMIN IS NOT AN MLEW

- Lemma: If there exist preference profiles $>^1$ and $>^2$ such that $f(>^1) = f(>^2) \neq f(>^3)$, where $>^3$ is their union, then f is not an MLEW
- **Proof:** $Pr[>^3 |x] = Pr[>^1 |x] \cdot Pr[>^2 |x]$
- Lemma: Any pairwise comparison graph whose weights are even-valued can be realized via votes
- **Proof:** To increase the weight on the edge (a,b), add the votes $a > b > x_1 > \cdots > x_{m-2}$ and $x_{m-2} > \cdots > x_1 > a > b$

MAXIMIN IS NOT AN MLEW

- Theorem [Conitzer and Sandholm] 2005]: Maximin is not an MLEW
- Proof:

