Cake Cutting Really is Not a Piece of Cake

Jeff Edmonds Kirk Pruhst

“A woman can't be too rich or too thin.”
Wallis Simpson, Duchess of Windsor

Abstract

We consider the well-known cake cutting problem in which@tpcol wants to divide a cake among
n > 2 players in such a way that each player believes that they fgit share. The standard Robertson-
Webb model allows the protocol to make two types of queriesluation and Cut, to the players. A
deterministic divide-and-conquer protocol with comptex®(n logn) is known. We provide the first
anQ(nlogn) lower bound on the complexity of any deterministic protaadhe standard model. This
improves previous lower bounds, in that the protocol isvedid to assign to a player a piece that is a
union of intervals and only guarantee approximate fairné¢s accomplish this by lower bounding the
complexity to find, for a single player, a piece of cake thdidgh rich in value, and thin in width. We
then introduce a version of cake cutting in which the plageesable to cut with only finite precision. In
this case, we can extend thén log n) lower bound to include randomized protocols.

1 Introduction

Our setting is a collection of self-interested entities wesire to partition a disparate collection of items of

value. Imagine heirs of an estate wanting to divide the gs$gns of the newly departed. Or imagine the

creditors of a bankrupt company, such as Enron, wantinglibugpthe company’s remaining assets. The

entities may well value the items differently. For exampmlee can imagine different heirs of an estate not
necessarily agreeing on the relative value a baseballdigyn®ete Rose, a worn leather lazy boy recliner, a
mint condition classic Farrah Fawcett poster, etc. Theigavise a protocol to split up the items fairly, that

is, SO every entity believes that he/she gets a fair shamdbas how he/she values the objects. Achieving
this goal is potentially complicated by the fact that thated may well be greedy, deceitful, treacherous,
etc. They may not be honest about how they value the objdetg,nhay collude together to cheat another
entity, etc. So we seek a protocol that guarantees a faiesba@veryone that is honest. If someone tries to
cheat or lie, then they cannot blame the protocol if they tend up with a fair share.

In the literature, this problem falls under the rubric of eakitting [1, 6]. (This is motivated by the well
known phenomenon that some people value the frosting maredthers.) The cake cutting problem arose
from the 1940’s school of Polish mathematicians. Since therproblem has blossomed and been widely
popularized [6]. Most people find cake cutting problems pgjyagically and socially interesting, and some

*York University, Canada. jeff@cs.yorku.ca. Supportedart ppy NSERC Canada.
TComputer Science Department. University of Pittsburghk@ics.pitt.edu. Supported in part by NSF grants CCR-002875
ANI-0123705, CNS-0325353, and CCF-0448196.

quick Googling reveals that cake cutting algorithms, argrthnalysis, are commonly covered by many
SODA regulars in their algorithms and discrete mathematicsses.

Cake cutting in formalized in the following manner. The altgeof value are ordered in some arbitrary
way, and then abstracted away into subintervals of thevatéy, 1], which is the cake. Each entity/player
has a value functiol’ that specifies how much that player values a particular $ehial, or more precisely,
the objects in the subinterval. This is a reasonable modle¢ivalue of each item is small relative to the total
value of the items. The protocol can query players about tfadiie functions, which are initially unknown
to the protocol. In the standard Robertson-Webb model [&hé]two types of queries are Evaluation and
Cut. In an Evaluation query, a player is asked how much hesgadusubinterval. In a Cut query, the player
is asked to identify an interval, with a fixed left endpoirftagarticular value.

1.1 Previous Results

Sgall and Woeginger [7] provide a nice brief overview of lesin this area. Books by Robertson and Webb
[6] and Brams and Taylor [1] provide more extensive overgew

Let first consider upper bound results. A deterministic pcot that use®(n?) cuts was described
in 1948 by Steinhaus in [8]. In 1984, Evan and Paz [2] gave ardghistic divide and conquer protocol
that useg(n logn) cuts. Further, they gave a randomized protocol that é5eg cuts andO(nlogn)
evaluations.

Approximately fair protocols were introduced by Robersod &Vebb [5]. We say that a protocol is
c-fair if it guarantees each honest player a piece of cake that levbglhas value at Ieaég. There is a
deterministic protocol that achieveX 1)-fairness with©(n) cuts andd(n?) evaluations [5, 3, 9].

Traditionally, much of the research has focused on minimgizhe number of cuts, without too much
regard for the number of evaluations. In the settings thaamgdnterested in, e.g. heirs splitting an inher-
itance, there is no good reason to assume that evaluatioiegaee especially easier or cheaper than cut
gueries. It is not clear why the initial focus was on minimigicuts. One possibility is concern that too
many cuts would lead to crumbling of a literal cake. In anyecage will view evaluation and cut queries as
equally expensive, and define the complexity of a protocbEthe number of queries used.

Thus one can summarize the known upper bound results asviollbhere is a deterministic protocol
with complexityO(n logn) that guarantees exact fairness. No protocol that usesax limenber of queries
is known, even if randomization is allowed, and even if thetpcol need only guarantée(1)-fairness.

So a natural avenue for investigation is to attempt to proMe (& log n) lower bound on the complexity
of any cake cutting protocol. The most obvious way to prowasulower bound is to try to reduce sorting (or
more precisely, learning an unknown permutation) to cakermu A first step in this direction was taken
by Magdon-Ismail, Busch, and Krishnamoothy [4], who wer&edb show that any protocol must make
Q(nlogn) comparisons to compute the assignment. So this result dictally lower bound the number of
queries. A second step in this direction was taken by SgdlMdoeginger [7] who give a more complicated
reduction from sorting to show dn(n logn) lower bound on the complexity of any deterministic protocol
that is required to assign to each player a piece that is desgudpinterval of the cake. On the positive
side, all known protocols have this property. On the otherdhahere is no natural reason to impose this
restriction in the settings that we are interested in. Tht is perfectly reasonable to assign to an inheritor
a collection of items that are not consecutive in the ingidditrary ordering of the items. The lower bound
of Sgall and Woeginger [7] can be seen to hold against rarekhprotocols. However, note that neither of
these lower bounds [4, 7] hold if the protocol is only reqdite achieve approximate fairness.

1.2 Our Results

In section 2, we give a lower bound 6f(nlogn) on the complexity of any deterministic protocol for
cake cutting, which is the first(n) lower bound in the general Robertson-Webb model. Recallthiea
complexity of a protocol is the number of evaluation and autries used. Our lower bound improves on
the results in [7] in two ways: (1) it applies to protocolstthay assign to a player a piece that is a union of
intervals, and (2) it applies to protocols that only guagant' —° approximate fairness, that is, players can
be allocated pieces with value as low-gs= —'.

We believe that the main reasons why earlier lower bounds wet stronger is that they essentially
attempted to reduce from sorting, which does seem to capitardifficulty of cake cutting in the general
model. Instead, we observe that not only are the playersrestto find a piece that is rich in value, but if
their pieces are not to overlap then most players need a fhiates thin in width. We obtain ouR(n logn)
lower bound by showing a lower bound 8flogn) on the complexity of a single player finding a piece
that is both thin and rich, where thin means that the widthmnﬁ, and rich means that the value at least
%. It is easy to see how to find a piece that is thin and rict{n) time using a randomized algorithm.
With probability at least, the interval[Cut(0,), Cut(0, 21)] is thin and rich ifi is selected uniformly at
random from[0, n — 1]. Thus our deterministic lower bound does not extend to remigked algorithms.

To our knowledge, all the literature to date has assumedpllagers can answer cut and evaluation
gueries with exact precision. This is probably not so réalia some settings, for example, it is probably
too much to ask an inheritor to value an arbitrary subcdb@odf items to within a penny. For this reason,
we introduce what we call approximate cut queries to whiclestar need only return an interval of cake
of value within al 4 ¢ factor of the requested value. To our knowledge, no one te das considered
approximate queries.

In section 3, we prove that iis a constant, then there is &in logn) lower bound on the complexity
of any randomized protocol for cake cutting with approxienaits (with relative error 4 €) and exact eval-
uation queries, even if only' ~%-fairness is required. The fact that the protocol is alloexealct evaluations,
but only approximate cuts, demonstrates the asymmetri@epofithese two operations. This lower bound
is obliviousin that our adversary doesn’t change the lower bound instameesponse to random events
internal to the protocol.

We believe that the main contribution of this paper, beydwdexplicit lower bounds, is the identification
of the importance of the problem of finding thin rich pieces #ls0 believe that the concept of approximate
gueries is interesting, and worthy of further investigatio

1.3 Formal Problem Statement

The cake consists of the intervidl, 1]. Each playep, 1 < p < n, has value functioiV,,(z1, z2) which
specifies a value in the ranffg 1] that a player assigns to the subinterual, z5]. Player values are scaled
so that they each have value 1 for the whole cake, thdt,;jd), 1) = 1. The value function should be
additive, that isyz; < zo < x3 € [0,1], V,(x1, z2) + Vp(x2, x3) = Vp(z1,23). In this paper, aieceof
cake is a collection of subintervals, not necessarily alsisgbinterval. Further, the ends of each subinterval
in a piece must have been at one of the ends of a cut. The valupiete of cake is then just the sum of the
values of the subintervals of the piece. The value functasasnitially unknown to the protocol.

The protocol’s goal is to assign to each player pieceC), of the cake. The pieces must be disjoint, that
is, C, andC, must be disjoint for all players # ¢. Further the protocol should kefair to each player
p, that is, it must be the case that the valueChfaccording toV,, is at least:. Thus one gets different
variations to the problem depending on the value.of

In order to achieve its goal in the Robertson and Webb motlelptotocol may repeatedly ask any
player one of two types of queries:

e AFEwaly(e, x1,x2): Thisl+ e approximate evaluation query to playereturns ar(1+¢)-approximate
value of the intervalz1, -] of the cake for playep. That is,ﬁﬁ{@,(:pl, 72) < ABEvaly(e, 21, 12) <
(14 €)Vp(x1, z2). An exact evaluation queryvaly(z1, z2), is equivalent ttd Eval, (0, z1, z2).

o ACut,(e, z1,): Thel + e approximate cut query returns ap > z; such that the interval of cake
[z1, z2] has value approximately according to playep’s value functionV,. More precisely,z,
satisfiesllzv;(:nl, z2) < a < (1+¢€)V,(x1, z2). An exact cut queryCut, (e, z1, a), is equivalent to
ACut, (0, x1,).

The protocol may be adaptive in the sense that the proto@al naly decide on thé&h query after it
has seen the outcome of the fiist 1 queries and when randomized on coin flips. The complexity of a
protocol is the worst-case, over all possible valuatiorcfioms, of the expected number of queries needed
to accomplish its goal. For cake cutting, Las Vegas and M@at¢o algorithms are of equal power; Since
the complexity of verifying the correctness of an assignrhes linear complexity, a Monte Carlo algorithm
can be converted into a Las Vegas algorithm.

Sgall and Woeginger [7] point out, cut and evaluation quedan efficiently simulate all other types
of queries used in protocols in the literature, e.g. cuttmgcake into two parts with a specified ratio of
value. There are many technical issues that must be coedigdren formally defining the “right” model.

A nice discussion of these issues can be found in Sgall andyWper [7]. For example, in the standard
model, after a cut, each piece is re-indexe@td|. As we are proving lower bounds, it is more convenient
to continue to index with respect to the entire cake. Sevesales that are relevant when proving upper
bounds — for example, further niceness properties on theevfahctions, and robustness against cheating —
are not particularly relevant to us here. Our value functigatisfy every niceness property considered in the
literature. To prove our lower bound, it suffices to consigielly the case when all players are honest. Our
lower bounds are robust against reasonable minor modditatd the model.

2 The Deterministic Lower Bound

This section is devoted to proving the following theorem:

Theorem 1. The complexity of any deterministic protocol for cake agtis Q(n(logn — log ¢)), even with
exact queries and only-approximate fairness is required. Note that this bounf@is logn) even when
Cc = ’I’Ll_é.

We now consider a new game, that we call the thin-rich gaméhtakes place in the same setting as
the cake cutting game. We then show that a bound (&g n — log ¢) on the complexity of thin-rich will
give a lower bound of2(n(logn — log ¢)) for cake cutting.

Thin-Rich Game: This game involves a single player. We say that a piece of alken if it has width
at most%. We say a piece idch if it has value at Ieasglz for this player. The goal for the protocol is to
identify a thin rich piece of cake.

Lemma 2. If the deterministic complexity of thin-rich i8(n) then the deterministic complexity for cake
cutting game i2(nT'(n)).

Proof. In our model for the cake problem, itis equivalent to assumedach of the players is in a separate

black box. The only interaction between them is via the seqe®f queries given by protocol. Based on
the previous answers proved by the players, the protocals#g®one player and either a evaluation or cut
guery for this player, to which the player responds. In the, ¢he protocol assigns each player a piece of

the cake. Now consider this interaction from the perspeativone of the players. As far as he can tell, he
is interacting with one deterministic protocol for the dmglayer thin-rich game. From our assumption, if
this player receives fewer thaf(n) queries, than there is a cake value distribution such treapibce of
cake allocated to the player is not both thin and rich. If thlesccutting protocol makes fewer thénT(n)
gueries, then this is the case for more than half of the pgayéany player fails to obtain a rich piece, the
protocol fails. If more than half the players fail to obtaimhén piece, then the resulting pieces cannot be
disjoint. O

2.1 Value Trees

In this subsection we define what we cadllue treesand explain how a cake value distribution is derived
from a value tree. Assume > 6 is twice an integer power of 3. The tree is a balanced 3-arietbtree
with 5 leaves, depttL = logz 5, and a valud/(u) for each node. For each internal nadeits left, middle,
and right children are denotétk), m(u), andr(u). Two of these three edges are labeleand are called
light edgesand the remaining edge is Iabelgchnd is called d&eavy edgeThe valueV/ (u) of node is the
product of the edge labels along the path from the roat thote thatu’s value is the sum of its children’s
values, i.eV(u) = 1V (u) + 1V (u) + 1V (u) = V(I(v)) + V(m(u)) + V(r(u)). Leté(u) denote the
number of edges in the path from the root to the nedeet ¢(u) denote the number of these that are heavy
edges. It follows thaV’ (u) = (3)2(®(1)4w—a(w),

The cake is partitioned int§ thin intervals, namely fori € [1,%], the ith interval of width2 is

[M, %} These3 intervals are associated with the leaves of the value tree.a¥8ociate with each

n

internal nodeu, the interval of cake that is the union of the leaves of thereglrooted at.. The width of
this interval istV (u) = 3%, and its value is given by (u). If u is a leaf, then this value is spread evenly
over this interval.

The intuition may be useful. The canonical thin-rich pieaich is the goal of a protocol to find,
consists a leafi with densityD(u) = V“/,((“u)) = 12/;: = 2. Towards this goal, the protocol must find nodes
in the tree that are both low in the tree and dense. In ordex farde to have high density, the path from the

root to it must have lots of heavy edges, namely

1\q(u)
3

>

QN

Or equivalently,
q(u) > logy(5)¢(u) —logy ¢ > 15¢(u) —logy c

The obviousD(logn) time protocol, starts at the root, which has dengiy:) = 1, and follows the unique
path consisting of only heavy edges down the tree. If a detéstic protocol attempts to circumvent this
process by leaping to a lower node, then the adversary canlysfin the edges in the path to this node to
be light. If a randomized protocol selects a random node ¢faeh edge is heavy with probabil%;giving
q(u) = 1¢(u), which is much less than thgu) = ;¢(u) — log, ¢ needed for it to be rich.

We say that a protocol for the thin-rich gamenisrmalif, when the input value distribution is derived
from a value tree, the protocol always returns a leaf of tHeeviree. We now show that, without loss of
generality, we may restrict our attention to normal proteco

Lemma 3. If there is a deterministic protocol for thin-rich with complexityl’(n), then for value distribu-
tions derived from value trees, there is a normal deterniimggotocol B with complexityO(7'(n)).

Proof. Consider an arbitrary protocel. LetZ denote the collection of intervals returned By Because
overallZ has density at Iea%, at least ond of these intervals iff does as well. Since the cardinality of

5

7 is at mostT'(n), one such interval can be found in time&(7'(n)). Because this interval has width at
most%, it overlaps with at most two leaves of the value tree. Bee@ash leaf has uniform value along its
width, at least one of these two leaves must have densityiat%e The protocol must know the value of
each of the intervals iff (or as subinterval) or else this interval might have no valdence, with at most
one additional evaluation, the protocol has enough inftiondo find this leaf. O

As a protocol for thin-rich asks queries, it gains inforroatiabout the value tree. In order to bound
the information learned, the lower bound adversary reviadabels of enough edges of the value tree to
provide the protocol with at least as much information astkte-rich protocol gets from the query. Let
P = uy, ..., u; be apath from the roat, of the value tree to a nodg,. The nodeyy, is said to beevealed
if all the labels on all the edges leading from a nagled < i < k — 1, to a child oru;, are revealed. Lemma
4 gquantifies what can be learned from revealed vertices.

Lemma 4.
e For any revealed node, the valueV (u) of the interval of cake under it can be computed.

e Letu be arevealed node, letbe the leftmost pointin, andy the rightmost pointin.. ThenV (0, z)
andV (0, y) can be computed.

e Letx be a pointin a revealed leaf, and lety > x be a pointin a revealed leaf. ThenV (0, z) and
V(zx,y) can be computed.

e Letu be arevealed leaf, let; is a pointinu, and leta be a cake value. From this information, the
least common ancestor afand the node that contains the points satisfyingV'(z1, z2) = a can
be computed.

Proof. We consider the items one by one. For the first iténfy) is just the product of the edge labels
leading tou. Consider the second item. Lej, . .., u = uy be the path from the root te. V (0, z) is then
just the sum of the values of the siblings to the left af;al < ¢ < k, which may be computed by the
previous item.V (0, y) is thenV (0, z) + V (u). Consider the third item. Let’ be the left most point in
the leafu. Because the value of the cake is uniform on leaV&g;, x) = gﬁ; -V(u). ThenV(0,z) =
V(0,2)+ V (2, z) andV (z,y) = V(0,y) — V (0, x). Consider the fourth item. Lety, ..., u; = u be the
path from the root to the leaf containingz;. Proceed up the tree from computingV (x4, y;) wherey; is
the right most point under,. HereV (z1,y1) = Lz/;;l -V(u) andV(x1,y;) is V(z1, yi+1) plus the sum
the values of the children af; that are to the right of;;. 1. When the sum exceeds thenu; is the least
common ancestor. U

Lemma 5. The deterministic complexity of thin-rich@logn — logc).

Proof. We lower bound the complexity of a normal protocbbn a value tree distribution. We maintain a
number of invariants. First, is that the protoctlknows nothing about the value tree except for the edges
that have been revealed by the adversary. Second, for edeheither none or all three of its outgoing edges
have been revealed. Third, at each pointin time the set ebied nodes forms of a connected component
of the value tree that contains the root. Finally, aftegueries, any root to leaf path contains at m'st
edges revealed to be heavy. Initially, these invariantsrasially true.

Suppose that on the’" query, the protocoM makes the quenfval(xy, z2). Letug,...ur be the
path from the root to the leaf containing. Letwu; be the lowest revealed node in this path. The edges in
ug, . . .uy, are revealed to be light. For each of these nodes, when igoimgt edge is revealed to be light,
one of its other two outgoing edges is reveal to be light amdotiher heavy. Note that this automatically

reveals not only all the nodes in this path, but also revdatha children of the nodes in this path. This
same process is then repeatedfgr By Lemma 4,A will then have enough information to compute the
answer to thigwval query. It is easy to verify that the invariants are maintdine

Now suppose that on thé" query, the protocol makes the querg'ut(x;,). As done for anEval
guery, the “forked” path from the root to the leaf containingis revealed. As given by Lemma 4, letbe
the least common ancestor of the leaf containipngnd the leaf containing the unknown pointsatisfying
V(x1,x2) = a. We will now describe how to recursively determine and réteapathlU from u; to 5 in
such a way that all these edges on this path are lightw Henhote the first unrevealed noddin Let 3 be the
value of cake thatl seeks from the subtree rootedvatThis is well defined by Lemma 4. l@}% < % then

the three edges leading to childrerwodire labeled?, 1, 3], otherwise, they are labelég, 1, 1]. Note that
either way, the next edge i will be a light edge. This process ends whehecomes the leaf containing
2. By Lemma 4,4 now has enough information to determine the valuenflt is easy to verify that all
invariants are maintained.

Suppose that the protocol terminates aﬁ%rL — log, ¢)/2 queries claiming that a leaf nodeis rich.
The second invariant states that at mﬁﬂ —log, c edges on the path from the rootidave been revealed
to be rich. By making the rest of the edges in this path ligletcan make: not rich. This then contradicts
the correctness od.

O

3 The Randomized Lower Bound

This section is devoted to proving the following theorem.

Theorem 6. If a protocol can only maké + ¢ approximate queries, angfairness is required, then the
complexity of any randomized protocol for cake cuttin@{s log 2 / log %).

Our proof uses Yao's technique, which states that it is saffido exhibit an input distribution on which
the average-case time of every deterministic protocfi(islog %/ log %). Our input distribution, chooses
independently for each playerandom value treérom which to derive his value distribution. This is done
by choosing independently for each node in the tree, ons olitgoing edges to be heavy. We again reduce
cake cutting to the thin-rich game.

Lemma 7. Assume that any protocol for the thin-rich game that make®ifehan7'(n) queries fails to
obtain a thin-rich piece with probability at Ieaétwhen given a random value distribution. If follows that
any protocol for cake cutting that makes fewer IW(n) gueries fails with high probability when the
players are given independently chosen value distribgtion

Proof. As we did in the proof of Lemma 2, assume that each player iparate black box. From our
assumption, if this player receives fewer tHEf) queries, then he fails to obtain a thin-rich piece with
probability%. If the cake cutting protocol makes fewer th?mﬂ"(n) gueries, then this is the case for more
than%n of the players. Hence, the expected number of players thabtobtain a thin-rich piece is at least
l%n and because these events are independent, with high plibaioire than half the players fail. As done
before, this means that the players pieces cannot be richamdverlapping. O

3.1 The Path and Triangle Game

As in the deterministic lower bound, we may restrict our riten to normal thin-rich protocols, that is,
those that return a leaf in the value tree. We now introduaaeg the path and triangle game, that we show

captures the complexity of finding path in the value tree iaufficiently rich in heavy edges to give a rich
leaf.

Definition of the Path and Triangle Game: The protocol is given a value tree, except that it does notkno
the value of the labels. The protocol makes a sequence abguethere each query is either a path query or
a triangle query. Both types of queries specify a nodethe tree. In response to a path query, the labels on
all of the edges incident to a node on the path from the roatdre revealed to the protocol. In response to
a triangle query, the labels on all the edges, on all the pa#iting fromu to descendants af, up to depth
v=2+ lg(%), in the subtree rooted af, are revealed to the protocol. The protocol’s goal is to fimitla
path, i.e. one with at Iea%L — log, ¢ heavy edges. The complexity of a particular protocol is tineier

of path and triangle queries needed to accomplish this goal.

3.2 From Thin-Rich to Path and Triangle

We now show how to reduce the thin-rich game to the path aaddte game.

Lemma 8. If the complexity of the path and triangle game is lower badhby7'(n) for a random value
tree, then the complexity of thin-rich gameigl’(n)) when the value distribution is derived from a random
value tree.

Proof. We will prove the contrapositive, that is, a thin-rich prosb A with complexity7'(n) implies the
existence of a protocdb for the the path and triangle game with complexity7'(n)). We construct3 by
simulatingA.

Suppose that protocel makes the querfval(xy, x2). ProtocolB then makes two path queries: one
query to the leaf containing; and one query to the leaf containimg. The valueV(x1, x3) can then be
computed by Lemma 4, and is then returnedltas the result to th&val query.

root = W

X= U vy X

Figure 1: The two path queries and one triangle query as®akigth an approximate cut

Suppose that protocel makes the queryiCut(e, x1, o). Letzo denote the point that seeks, that is
the point such thalt’ (z1, z2) = «. Note that at this point in time, neithérnor B may know the exact value
of x5, but nevertheless we wish to reason aboutProtocol B then makes at most two path queries and at
most one triangle query. After these queries, protdealill have enough information to provide protocol

A with a pointy such thatV’ (x4, y) is sufficiently close tax. We now define these three queries. Figure 1
may be useful in understanding the queries.

The First Path Query: Letug, uq, - . ., ur, be the sequence of nodes along the path from the root to the lea
containingz; in the tree. The first path query is to the nade If both z; andzs are inuy then B may
returnzxs. If z9 is notin the leat:, thenB makes a second path query.

The Second Path Query:Using Lemma 4, ProtocaB computes the least common ancestoof the leaf
containingz; and the leaf containings. All of the children ofu,. must be revealed sinee.,; is on the
revealed path from the root ta . Letv be the child ofu,. containingz,. The second path query is to the
leftmost leafv,, in the subtree rooted at Letv = vg, v1, . . . v, be the nodes along the path franto v,,

The Triangle Query: Again using Lemma 4, Protocét computes the least common ancestoof v,,, and
the leaf containing:». The triangle query is to the node.

Computing the Result: If the height ofv; < ~ then the leaf containings is known toB. The value ofr,
can then can be computed by Lemma 4 and is returned to pratod@therwise, letv, wo, . . ., woy be the
descendants af; of depth+ in the subtree rooted at. Letw,; be the node such that, is in the subtree
rooted atw;. The pointy returned by protocoB will any pointin the intervato;.

We now argue the correctness of the result returned by psbid.cBecause both, andy are undetw,,
the errorV (z1,y) — o will be at mostV (w;). We haveV (w;) < (3)7V (vs), sincew, is v edges below
and every edge has a label of at mgstWe haveV (v;) < 4V (I(v2s), because the edge to the left child
I(vs) of vg has a label of at least. We have4(1)” < ¢, by the definition ofy = 2 + 1g(2). We have
V(l(vas) < «, since the interval undé(v;) is totally contained in the interval of valueto the right ofz; .
Combining these gives th&t(w;) < ea. This completes simulation of théCut(e, x1, o) query.

In the end, protocaoA finds a rich leaf, which provides protocBlwith a rich path. O

3.3 The Analysis of the Path and Triangle Game

This section is devoted to proving that with probability1) the complexity of every randomized protocol
for the path and triangle game(i¥log %/ log %) if the input is a random value tree. Létet be the set of
nodesu which have been revealed, i.e. labels on path twe known. We define a potential functidtiu)

on a node: by (4¢(u) — £(u)). Note that for a random node(u) = 3¢(u) andF(u) = L 10(u) — ((u) =
—56(u), but for a rich pathy(u) ~ ;56(u) andF(u) ~ &L — L = {5 L. We define a potential function

F for the state of the game by = max,cp.: F'(u). Initially Det consists of only the root. A root) = 0,
andq(root) = 0, itis the case that initiallf" = 0. We now bound the expected change in the value of the

potential function as the result of a single query.

Lemma 9. There exists a constamt, such that the expected changehnas the result of one query is at
most2y + 5.

Proof. First consider the path operation. The player specifies @afe:land learns the labels on the péth
from the root tar (plus the labels on the other edges that lead from a pauel to a child ofy). Letu be
the last node i/ that was inDet before the path query. Letbe the node for whicli" is maximized after
the path query. Whe#' changes, there are two cases. First assumetisan on the path/. Let /' be the
number of edges from to v andq’ be the number of these which are heavy. HeRtgthe amount thaf’
increases by, iéi—q/ — ¢'. Note thatF” > f is equivalent ta; > 41—1; + %. We then use this to bound the

expected value of”.

E[F] = [f-Pr[F ={]

=0

:/ Pr [F' > f]
£>0

/ Af
g/f ZPr[ﬁ—mandq >H+H]

>0 m>f

_ _ 12f m
= /f>OZPr[€ mandq><1—|—<11m+11>>3]

m>f
If ¢"is fixed to bem, theng’ is binomially distributed with meaff. Using a Chernoff bounds we know that
Pr[¢ > (1+6) 2] < e /6, Inour case) = (11127{1 + 11) Hence,

/ Z 12f 2 m
E[F} = /fzo feXp <_<11m+11> 'E>
_ / o (3 24f2> (1) e (72)
f>0m>f 121 726
oo (22 o (Y
o<rem P\ 121m P21

i) |
i >Oexp(%g) (1E2)
i) 00

This completes that case when the ned®r which F' is maximized is in on the patti. The only
remaining case is whenis a child of a node on the path. For such nodesg,(v) can be at most one more
than the value of’ onv’s parent. Thus the expected changefobdf siblings of nodes iV is at most an
additive constant more than the expected change on the imotles

Now consider a triangle operation to a nadeThe protocols learns all the labels to a deptbeloww.
For any node, this increaseg(v) by at mosty. The increase i(v) has to be at least the increase;(f).
ThusF can increase by at mogtlt —) < 2. O

We are now ready to establish the lower bound for the pathréamthie game.

Lemma 10. Any protocol for the path and triangle game that makes felwanf'(n) = (log %/ log %)
gueries fails with probability at Ieas;i-t to find a rich path.

Proof. Finding a rich path involves finding a leafwith q(u) > (75L —1g2¢), I(u) = L, and F(u) =
Lqu) = l(u) > L (5L - 1g 2c) L = ({5L — 4 1g2c). However, Lemma 9 proves that at each time
step, the expected changeﬁh is at most2y + (3. Therefore, after fewer thafi(n) queries,E[F], the
expected value of, is at most(2y + 3)T'(n). By Markov’s inequality, the probability thadt > 4E[F]is at

10

most%. Hence, setting’(n) = m (75L — 4L 1g2c) gives a contradiction. Plugging in= 2 + lg(1)

andg = O(1) givesT'(n) = Q(log 2/ log 1) as required. O

We finish with a few comments on the tightness of our lower lasumith approximate queries. If exact
queries are replaced hy+ e-approximate queries, then ti@n logn) time divide and conquer protocol
returns only(1+¢)'°&(")-fair pieces, because the error accumulates multiplieltiat each of théog(n)
levels of recursion. Doing the same for tBén?) time protocol introduces only + ¢ error to the final
fairness. If the model allows only+ e-approximate queries, for some constanbut requires only 1+
e)e(" << nl~9-faimess, then our lower bound Bf(n logn) is tight. If the model allows onlyt + ;-
approximate queries and requir@$1)-fairness, then our lower bound 6¥(nlogn/loglogn) is off by
at most aloglogn term. The outstanding open question in this area is the emunplexity of achieving

O(1)-fairness withO(1+¢)-approximate queries.

References

[1] S.J. BRAMS AND A.D. TAYLOR (1996). Fair Division — From cake cutting to dispute resolution
Cambridge University Press, Cambridge.

[2] S. EVEN AND A. Paz (1984). A note on cake cuttin@iscrete Applied Mathematics 285—296.

[3] S.O. KRUMKE, M. LIPMANN, W. DE PAEPE, D. POENSGEN J. RaMBAU, L. STOUGIE, AND G.J.
WOEGINGER (2002). How to cut a cake almost fairlroceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'2Q28H3-264.

[4] M. MAGDON-IsMAIL, C. BusCH, AND M.S. KRISHNAMOORTHY (2003). Cake cutting is not a
piece of cakeProceedings of the 20th Annual Symposium on Theoreticadspf Computer Science
(STACS’'2003)LNCS 2607, Springer Verlag, 596—607.

[5] J.M. ROBERTSON ANDW.A. WEBB (1995). Approximating fair division with a limited numbef o
cuts.Journal of Combinatorial Theory, Series A,7310-344.

[6] J.M. RoBERTSON ANDW.A. WEBB (1998).Cake-cutting algorithms: Be fair if you caA.K. Peters
Ltd.

[7] J. SGALL AND G. J. WOEGINGER(2003). A lower bound for cake cutting. LNCS 2461, Springer-V
lag, 896—901Proc. of the 11th Ann. European Symp. on Algorithms (ESA}uke Notes in Comput.
Sci. 2832 Springer, 459-469.

[8] H. STEINHAUS (1948). The problem of fair divisiofeconometrica 16101-104.

[9] G.J. WOEGINGER (2002). An approximation scheme for cake division with a@innumber of cuts.
Proc. of the 10th Ann. European Symp. on Algorithms (ESAjtuke Notes in Comput. Sci. 2461
Springer, 896-901.

11

