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Reasoning with uncertainty Il
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Sum- and max-product, belief propagation
Exact on trees

Junction trees

Complexity wrt treewidth
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Temporal Models
X; = state of the world at time t

Y; = Observation (evidence, measurement,..)
attime t

Examples:

X = types of actions, Y = observations from
video

X = location/orientation in the world, Y =
observations

Assumptions

» Stationarity
— Technically, infinite set of variables

— Assume that process does not change over time: the
conditional probabilities that define the model do not
change over time

* Markov

— State and measurements depend only on variables within
a bounded time window

— Conditionally independent from all the other variables
conditioned on that time window

- P(Xch[1:c—1]) = P(thx[t—dzc—l])
- P(Yt|X[1:t]:Y[0:t—1]) = P(Y¢|X¢)
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Example

* First-order:

* From d-separation, X, is conditionally independent of
X ,.,8iven X,
* No independence of measurements Yt

Alternate view

* Polytree in directed representation
* Tree in factored graph
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Operations

* Filtering: P(current state given all previous
observations)

!
I

t
* Prediction: P(future states given all previous
observations)
> |
t 't+1
* Smoothing: P(past state given all
observations)
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t t+1
Operations

* Filtering: P(current state given all previous
observations)

P(Xt+1|y1:t+1)ap(yt+1|Xt+1)ZP(Xt+1|xt)P(xt|y1:t)

Xt
Prediction: P(next state given all previous observations)

P(Xt+1|y1:t)az P(Xey1lxe)P(x¢|y1.e)
Xt
Smoothing: P(past state given all observations)
P(Xily1:0) P (Xic|y1:00) P Wi 41:¢ 1 X k)

P(Yi41:¢|Xi)=
Zxk+1P(J’k+1|xk+1)P(xk+1|Xk)P(J’k+2:t|xk+1)
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P(Xtpr+1lyr.0)a Xx, PKX e p1 %64 P (XL |Y1:e)

Further prediction?

No added evidence

Stationary distribution

P(Xes1ly1:e41)0P Ve 411Xe41) Z P(Xps1lx)fr

Xt

fe = P(xelyse)
=) =)

* Estimate from past: Propagate forward in time
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br+1.t = PWies1:61Xx)
by1:t = Z P(Wis1|Xk41) P11 X)) Dregee

e

Xk+1 _

* Estimate from future: Propagate backward in time

P(Xylys.0)afibysq:t

¢ Estimate from both: Combine forward and backward terms
* Inference over 1:t linear in number of states
* (Polytree case in which inference is efficient; sum-product)
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Inferring the most likely set of states

Same as max-product vs. sum-product

max  P(xq,.., %, Xepq|V1es)
X1aXt

P(yes1lXet1) H}CaX(P(Xt+1|xt) max P(xy,.., X1, X¢|Y1:t)
t X1raXt—1

,,,,,

My @
P(yes1lXes1) n}?X(P(XHﬂxt)mnt)

-

. Xdiscre%gv?igljlal case: HMM

K states
« K2  transitions: P(X4+1|Xp)
* Emission probabilities P(Y;|X;)
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Special case: HMM

s My (Xe) = xmf}f P(x1,..,x¢ [y1:t)
1roAt—1

t=1 t t+1

:
-8 .

Special case: HMM
Mypp1(Xep1) =
P(yrs1lxes1) TI}CE:X(P(xtﬂ lx )my.e)

t=1 t t+1

-0 8
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Special case: HMM

C )
C 1 ) C 1)
- DP
* Special case of max-product (same as tree example the last
time)
. time in general (excepting special formof ( | )
t=1 t t+1

Example

* Observations: (Noisy) estimates of link locations
* States: Actions executed at each time step

Noisy!

Nazli Ikizler and David Forsyth, “Searching video for complex activities with finite
state models” IEEE Conference on Computer Vision and Pattern Recognition, 2007



1/30/2012

L walk run
- 5 b ¢ ' 4 -
R walk run
€ RS “ y el o 38 .,
am = : : leg
activity ;o Jump L : TR activity
model o5 model

 Different action model for each part (learned
from motion capture data)

pickup

Nazli Ikizler and David Forsyth, “Searching video for complex activities with finite
state models” IEEE Conference on Computer Vision and Pattern Recognition, 2007
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walk

walk]

pickup
jump
stand

crouch
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pickup jump  stand crouch  run walk wavepickupjump reach standcrouchcarry run

walk .
wave
pickup
jump
reach
stand
crouch
carry
1 ,n

Nazli Ikizler and David Forsyth, “Searching video for complex activities with finite
state models” IEEE Conference on Computer Vision and Pattern Recognition, 2007
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Extension

* Longer-range connections (e.g., tracking, ..)
* No problem (in principle): Update representation of

Extension

* Xand X are not separated
* Need to represent all states

* Grouping states does not solve the problem: Standard
HMM back/forward is NK?P

12
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Mei and Porikli ‘08

Linear dynamical models

Canonical case: x = [u, v,u, V]
What parametric representations?
Desirable property (closure):

P(Xt+1|y1:t+1)ap(yt+1|Xt+1)ZP(Xt+1|xt)P(xt|y1:t)

Xt

and

P(X¢|y1:e)

must be of the same form (only parameters change)

Need to use exponential family
Gaussian model N (u, X) satisfies closure
Other models grow in complexity without bounds

Linear transform of variable A~N(u, 2) to MA +
U U~N(0,T) yields N(Mu, MEM" +T)

13



Linear dynamical models
P(Xt411Xe) = N(AX, Z)

P(Y|Xy) = N(BX,T)
* Equivalent to:
Xiv1=AX;+w w~N(0,X)
Y =BX;+v v~N(TI)

E.g., constant velocity:

* x = [u,v,u,7v]
« A=[IAt;01]

Gaussian rlﬁcl)laeq %lrogagzgeasmllgug t%tc-éec{Qi%:

P(xt+1|y1:t+1)ap(yt+1|xt+1)Zp(xt+1|xt)P(xt|yl:t)

Xt

P(xt+1Iyl:t+1)ap(yt+1|xt+1)jP(xt+1|xt)P(xt|y1:t)dxt

P(x¢tly1.) ~ N(ue, Up)

pes1 = Ape + K(yep1 — BAue)
Vt - AUtAT + E
K =V,BT(BV,BT +TI')~1
U1 = (U — KBV,

1/30/2012
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Linear dynamic systems

Gaussian model propagates through the chain:

P(xt+1|J’1:t+1)f1P(J’t+1|xt+1)ZP(xt+1|xt)P(xt|Y1:t)

Xt

P(xt+1Iyl:t+1)ap(yt+1|xt+1)jP(xt+1|xt)P(xt|y1:t)dxt

P(x¢|y1.e) ~ N(ue, Up)

Innovation

/
pes1 = Ape + K(yey1 — BApe)

Gain =

y Ve = AUAT + 32 Predicted
B if trus't new/ﬁ( =V, BT(BV BT + F)—l\ covariance without
observation t t any measurements
0 if trust X, Ueyr = U — KB)V;

* Non linear case:
~Xey1 = fXe)+w w~N(0,X)
* First-order approximation f(X)~ f(u) +
J(X —w)
* Local approximation
—JX¢
* Local linear approximation can be very bad (e.g, X
=[xy0])
* Other possibility: Sample U,, transform the
samples, estimate V, from the samples

1/30/2012
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More general case

Arbitrary connections between state and observation variables at any time ¢

1. Replicate over time (unroll) = General graph, can’t do exact inference (in
general)

2. Collapse state variables wrt observed - K”state tables in general
In the discrete case, DBN <=> HMM but note the complexity issue

Arbitrary connections between state and observation variables at any time ¢
1. Replicate over time (unroll) = General graph, can’t do exact inference directly (in general)
2. Collapse state variables wrt observed - K”state tables in general

In the discrete case, DBN <=> HMM but note the complexity issue
Alternative

— Sampling
— Assumed density

1/30/2012
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Example

1 | Using the bathroom
2 | Making oatmeal
3 | Making soft-boiled eggs
4 | Preparing orange juice
5 | Making coffee
o 6 | Making tea
L 7 | Making or answering a phone call
8 | Taking out the trash
bowl, coffee container, coffee grinder, coffee tamper, 9 | Setting the table
cupboard(6), dishwasher, door(2), drawer(2), egg carton, 10 | Eating breakfast
espresso cup(2), espresso handle, espresso steam knob, 11 | Clearing the table

espresso switches, faucet(2), freezer, milk, hand soap, juice,
juice pitcher, kettle, measuring cup-half, measuring cup-
one, measuring scoop, milk steaming pitcher, mug, oatmeal,
refrigerator, salt, saucepan, cooking spoon, stove control(2),
sugar, table cup(4), table plate(4), table spoon(4), tea bag,
tea box, telephone, toilet flush handle, toilet lid, vanilla
syrup

* Observations: IDs of (60) objects manipulated (RFID tags)

* State: Activity performed (11 fine-grained activities requiring
extensive observations)
* Hypothesis: “invisible human hypothesis”

Patterson, D.J.; Fox, D.; Kautz, H.; Philipose, M. Fine-grained activity recognition by aggregating
abstract object usage. Intern. Symp. Wearable Computers.

SIORS

A B C

e Baselines:

A. Each activity has its own HMM (11 HMMs) - take the
best

B. A single HMM for all the activities (11-valued states)

C. Asingle HMM with state = activities x objects (660-valued
states)

17



* More complicated relations:

— The number of objects is an indication of the type of activities
(setting the table vs. eating breakfast)

— E node (Exit) indicates end of previous activity

— AD node (Aggregate Distribution)

Clear The Table

Eat Breakfast F r ————— e =

Model Inference
— Ground Truth

Set The Table - e
Take out trash

Use The Phone

Make Soft Boiled Eggs +

Make Oatmeal
Make Juice
Make Tea

Make Espresso _—

Use The Bathroom [ = -

4500 4750 5000 5250 5500 5750 6000 6250 6500
Time (seconds)
Clear The Table I - —
Eat Breakfast t S ——
Set The Table

Model Inference
Ground Truth

Take out trash
Use The Phone
Make Soft Boiled Eggs |
Make Oatmeal
Make Juice
Make Tea
Make Espresso =

Use The Bathroom

4500 4750 5000 5250 5500 5750 6000 6250 6500
Time (seconds)

B

Model Inference|
— Ground Truth

500 4750 5000 5250 5500 5750 6000 6250 6500

1/30/2012
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Clear The Table
Eat Breakfast
Set The Table
Take out trash

Use The Phone

Make Soft Boiled Eggs +

Make Oatmeal
Make Juice
Make Tea

Make Espresso

Use The Bathroom

Model Inference
— Ground Truth

Accuracy
Time-Slice | 68% | 88% | B7% | 88%
() | (5.9) | 4.2) | (9.3) | (3.1)
Edit Distance  p 12 9 14 7
(o) | (2.9) | (6.2) | (104) | (22)

4500 4750 5000 5250 5500 5750 6000 6250 6500

Time (seconds)

* Does not scale well (6602 tables) for C

* Better representation of relations in D

* Hierarchical representation of object list to address robustness
issues?

Patterson, D.J.; Fox, D.; Kautz, H.; Philipose, M. Fine-grained activity recognition by aggregating
abstract object usage. Intern. Symp. Wearable Computers.
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