Reasoning with uncertainty II

Summary

Exact inference linear in the number of nodes ($d^{k+1} n$) for polytrees

Graphical tests for
independence structure

Summary: Undirected

Example

- $y=$ decision variable (class label (e.g., road, car, etc...))
- $x=$ observation variable (e.g., image patch)

Undirected: What factors

- Factors do not need to be CPTs or combinations of probabilities
- Only condition: non-negative
- Intuitively: Potential measuring compatibility between nodes
- But need normalization

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{A} \varphi_{A}\left(x_{A 1}, \ldots, x_{A k}\right)
$$

Independence

- Simpler condition:

- If all paths are blocked by E then $S_{1} \perp S_{2} \mid E$
- Purely graphical property independent of actual φ^{\prime} s

- $y=$ decision variable (class label (e.g., road, car, etc...))
- $x=$ observation variable (e.g., image patch)
- Markov property of local dependence

Inference

- General query probability distribution of set of variables E_{1} given set values of other set E_{2}
- In general: $P\left(E_{1} \mid E_{2}\right) \alpha \sum_{E_{3}} P\left(x_{1}, \ldots, x_{n}\right)$
- Example:

Inference

$P\left(x_{1}, \ldots, x_{n}\right) \alpha \varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) \varphi_{3}\left(x_{3}\right) \varphi_{4}\left(x_{2}, x_{3}, x_{4}\right) \varphi_{5}\left(x_{1}, x_{4}, x_{5}\right)$
Conditioned on x_{2}, x_{5} so fix them
$P\left(x_{1}, . ., x_{n}\right) \alpha \varphi_{1}\left(x_{1}\right) \varphi_{2}^{2}\left(x_{2}\right) \varphi_{3}\left(x_{3}\right) \varphi_{4}\left(x_{2}, x_{3}, x_{4}\right) \varphi_{5}\left(x_{1}, x_{4}, x_{5}\right)$ $P\left(x_{1}, . ., x_{n}\right) \alpha \varphi_{1}\left(x_{1}\right) \varphi_{3}\left(x_{3}\right) \varphi_{4}^{\prime}\left(x_{3}, x_{4}\right) \varphi_{5}^{\prime}\left(x_{1}, x_{4}\right)$

Inference

Eliminate the remaining set $\left(E_{3}\right)$ by marginalization

$$
\begin{array}{r}
P\left(x_{4} \mid x_{2}, x_{5}\right)=\alpha \sum_{x_{1}} \varphi_{1}\left(x_{1}\right) \varphi_{5}^{\prime}\left(x_{1}, x_{4}\right) \sum_{x_{3}} \varphi_{3}\left(x_{3}\right) \varphi_{4}^{\prime}\left(x_{3}, x_{4}\right) \\
P\left(x_{4} \mid x_{2}, x_{5}\right)
\end{array}
$$

Inference

$$
P\left(x_{4} \mid x_{2}, x_{5}\right)=\alpha \sum_{\nearrow} \varphi_{1}\left(x_{1}\right) \varphi_{5}^{\prime}\left(x_{1}, x_{4}\right) \sum_{x_{3}} \varphi_{3}\left(x_{3}\right) \varphi_{4}^{\prime}\left(x_{3}, x_{4}\right)
$$

Finish by normalizing to get a proper probability Possible because "local" probability Don't need to normalize before that

Inference

$$
P\left(x_{4} \mid x_{2}, x_{5}\right)=\alpha \sum_{x_{1}} \varphi_{1} \varphi_{1}\left(x_{1}\right) \varphi_{5}^{\prime}\left(x_{1}, x_{4}\right) \sum_{x_{3}} \varphi_{3}\left(x_{3}\right) \varphi_{4}^{\prime}{ }_{4}\left(x_{3}, x_{4}\right)
$$

We were able to group the variables
The smaller the group the better How small can the groups be?

- Net result: $|x|^{2}$ operations instead of $|x|^{N}$
- General procedure with partial sums:

$$
m_{j i}=\sum_{x_{j}} f_{i j}\left(x_{i}, x_{j}\right) \prod_{N(j) \backslash i} m_{k j}\left(x_{j}\right)
$$

- Take arbitrary node as root
- Propagate partial sums from leaves
- Propagate partial sums from root
- Treat factors as nodes, similar approach to passing partial sums

MAP

- Interested in finding max $P(X)$
- Same idea for distribution applies except with max instead of sum

$$
m_{j i}\left(x_{i}\right)=\max _{x_{j}} f_{i j}\left(x_{i}, x_{j}\right) \prod_{N(j) \backslash i} m_{k j}\left(x_{j}\right)
$$

Exact inference?

- Back to the initial question:
- Exact inference easy on trees (quadratic)
- Can convert graph to tree with equivalent representation
- But complexity is size of largest node in the equivalent tree (treewidth+1)
- Finding the tree with minimum treewidth is NP-hard
- Approximations, sampling, loopy BP

Connections

- CSP \rightarrow all values are 0/1 (= constraints between variables; $P(A \mid B) \rightarrow$ constraints satisfied when B variables are clamped)
- ILP = MAP assignment

Yanover, Meltzer, Weiss. Linear programming and BP. JML 7.

- Examples:
- Reasoning about visual and text knowledge

building grass sky

crab rock

boat water sky house trees

polarbear snow
- Reasoning about spatial structure

Image labeling (Loopy-BP)

Similar problems but using relations (Above, behind, below, left, right, beside, bluer, greener, nearer, smaller, larger, brighter)

Abhinav Gupta and Larry S. Davis, Beyond Nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers, ECCV 2008.

$$
P\left(n_{1}, n_{2} . \mid I_{1}, I_{2} . . I_{12}, \ldots, \quad\right) \times \prod_{i} P\left(I_{i} \mid n_{i} \quad\right) \quad \prod_{(, k) \mid} \sum_{r_{j, k}} P\left(I_{j k} \mid r_{j k} \quad\right) P\left(r_{j, k} \mid n_{j}, n_{k}\right)
$$

Annotation

Segmentation

Classification
 Segmentation

Classification Annotation

Class: Polo

Class: Polo

L.-J. Li, R. Socher and L. Fei-Fei. Towards Total Scene Understanding:Classification, Annotation and Segmentation in an Automatic Framework. CVPR2009

Example: Inferring human poses

$I=$ (features from) Input image dat
$x_{i}=$ Pose (location and orientation) of limb i

Example from Felzenszwalb’04

General problem: Representing knowledge about spatial relations between variables

Is this a face?

[Fischler \& Elschlager 73]

Example

$$
P(X \mid I) \alpha
$$

Agreement of
location with image

Prior distribution of shapes

- Max-product: Tree-structure \rightarrow DP algorithm, efficient
- Normally N^{2} but reduction with Gaussian model for $\varphi_{i j}$

Sum-product marginals

D. Ramanan. Learning to parse images of articulated bodies. NIPS 2007.

Example

- Variables = locations of landmark points on shape $\left(x_{i}\right)$ + measurements from image (I)
- Max-product inference

Prior distribution
of shapes

