Reasoning with uncertainty II
Summary

Exact inference linear in the number of nodes \((d^{k+1}n)\) for polytrees

Graphical tests for independence structure
Summary: Undirected

\[P(a, b) = \varphi(a, b) \]

\[P(a, b) = \varphi_1(a)\varphi_2(b) \]

\[P(a, b, c) = \varphi_1(a, b) \varphi_2(b, c) \quad a \perp c | b \]

\[P(a, b, c) = \varphi_1(a, b) \varphi_2(b, c) \varphi_3(a, c) \]

\[P(a, b, c) = \varphi(a, b, c) \]
• y = decision variable (class label (e.g., road, car, etc...))
• x = observation variable (e.g., image patch)

$P(x, y) \propto \prod_i \psi_i(y_i, y_{i+1}) \prod_i \phi_i(x_i, y_i)$

Consistency on spatial distribution of labels

Agreement of label vs. input data
Undirected: What factors

- Factors do not need to be CPTs or combinations of probabilities
- Only condition: non-negative
- Intuitively: Potential measuring compatibility between nodes
- But need normalization

\[
P(x_1, x_2, \ldots, x_n) = \frac{1}{Z} \prod_A \phi_A(x_{A1}, \ldots, x_{Ak})
\]
Independence

• Simpler condition:

If all paths are blocked by E then $S_1 \perp S_2 \mid E$

• Purely graphical property independent of actual φ’s
\(y \) = decision variable (class label (e.g., road, car, etc...))
\(x \) = observation variable (e.g., image patch)
• Markov property of local dependence
Inference

- General query probability distribution of set of variables E_1 given set values of other set E_2
- In general: $P(E_1 \mid E_2) \propto \sum_{E_3} P(x_1, \ldots, x_n)$

Example:

$$P(x_4 \mid x_2, x_5)$$
Inference

\[P(x_1, \ldots, x_n) \propto \varphi_1(x_1)\varphi_2(x_2)\varphi_3(x_3)\varphi_4(x_2, x_3, x_4)\varphi_5(x_1, x_4, x_5) \]

Conditioned on \(x_2, x_5 \) so fix them

\[P(x_1, \ldots, x_n) \propto \varphi_1(x_1)\varphi_3(x_3)\varphi'_4(x_3, x_4)\varphi'_5(x_1, x_4) \]

\[P(x_4 | x_2, x_5) \]
Inference
Eliminate the remaining set \((E_3)\) by marginalization

\[
P(x_4|x_2, x_5) = \alpha \sum_{x_1} \varphi_1(x_1) \varphi'_5(x_1, x_4) \sum_{x_3} \varphi_3(x_3) \varphi'_4(x_3, x_4)
\]
Inference

\[P(x_4|x_2, x_5) = \alpha \sum_{x_1} \varphi_1(x_1) \varphi_5'(x_1, x_4) \sum_{x_3} \varphi_3(x_3) \varphi_4'(x_3, x_4) \]

Finish by normalizing to get a proper probability
Possible because “local” probability
Don’t need to normalize before that
Inference

\[P(x_4|x_2, x_5) = \alpha \sum_{x_1} \varphi_1(x_1) \varphi'_5(x_1, x_4) \sum_{x_3} \varphi_3(x_3) \varphi'_4(x_3, x_4) \]

We were able to group the variables
The smaller the group the better
How small can the groups be?
Example: Tree

\[P(x_1 | y) = \sum_{x_2} \sum_{x_3} \phi_{12}(x_1, x_2) \phi_{23}(x_2, x_3) \psi_1(y_1, x_1) \psi_2(y_2, x_2) \psi_3(y_3, x_3) \]

\[m_{ji} = \sum_{x_j} f_{ij}(x_i, x_j) \prod_{N(j) \setminus i} m_{kj}(x_j) \]
- Net result: $|x|^2$ operations instead of $|x|^N$

- General procedure with partial sums:

$$m_{ji} = \sum x_j f_{ij}(x_i, x_j) \prod_{N(j) \setminus i} m_{kj}(x_j)$$

- Take arbitrary node as root
 - Propagate partial sums from leaves
 - Propagate partial sums from root

- Treat factors as nodes, similar approach to passing partial sums
MAP

- Interested in finding $\max P(X)$
- Same idea for distribution applies except with max instead of sum

$$\max P(X) = \max_{x_1 x_2 x_3 x_4} \varphi(x_1, x_2) \varphi(x_2, x_3) \varphi(x_3, x_4)$$

$$= \max_{x_1, x_2} \varphi(x_1, x_2) \max_{x_3} \varphi(x_2, x_3) \max_{x_4} \varphi(x_3, x_4)$$

$$m_{ji}(x_i) = \max_{x_j} f_{ij}(x_i, x_j) \prod_{N(j) \setminus i} m_{kj}(x_j)$$
Exact inference?

- Back to the initial question:
 - Exact inference easy on trees (quadratic)
 - Can convert graph to tree with equivalent representation
 - But complexity is size of largest node in the equivalent tree (treewidth+1)
 - Finding the tree with minimum treewidth is NP-hard
 - Approximations, sampling, loopy BP
Connections

• CSP \rightarrow all values are 0/1 (= constraints between variables; $P(A|B) \rightarrow$ constraints satisfied when B variables are clamped)

• ILP = MAP assignment

Yanover, Meltzer, Weiss. Linear programming and BP. JML 7.
• Examples:
 – Reasoning about visual and text knowledge

 – Reasoning about spatial structure

 Is this a face? [Fischler & Eischlager 73]
Image labeling (Loopy-BP)

- a = class label (e.g., road, car, etc...)
- b = image data at local patch

Example from Carbonetto, de Freitas & Barnard, ECCV’04
Similar problems but using relations (Above, behind, below, left, right, beside, bluer, greener, nearer, smaller, larger, brighter)

Inference: BP

\[P(n_1, n_2, \ldots | I_1, I_2, \ldots I_{12}, \ldots) \propto \prod_i P(I_i | n_i) \prod_{(j,k)} \sum_{r_{jk}} P(I_{jk} | r_{jk}) \cdot P(r_{jk} | n_j, n_k) \]
L.-J. Li, R. Socher and L. Fei-Fei. Towards Total Scene Understanding: Classification, Annotation and Segmentation in an Automatic Framework. CVPR2009
Example: Inferring human poses

$I =$ (features from) Input image data

$x_i =$ Pose (location and orientation) of limb i

Example from Felzenszwalb’04
General problem: Representing knowledge about spatial relations between variables

Is this a face? [Fischler & Elschlager 73]
Example

\[P(X|I) \alpha = \prod_i \varphi_i(x_i, I) \prod_{i,j} \varphi_{ij}(x_i, x_j) \]

- Max-product: Tree-structure \(\rightarrow \) DP algorithm, efficient
- Normally \(N^2 \) but reduction with Gaussian model for \(\varphi_{ij} \)
Example

• Variables = locations of landmark points on shape \((x_i) \) + measurements from image \((I) \)

• Max-product inference

\[
P(X|I) \propto \prod_{i,j} \phi_{ij}(x_i, x_j, \theta) \prod_{i} F_i(x_i, I) \prod_{i,j} F_{ij}(x_i, x_j, I)
\]

Prior distribution of shapes
Agreement of location with image
Agreement line between 2 neighboring landmarks and image gradients
