Reasoning with uncertainty Il



Summary
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Exact inference linear in
CPT the number of nodes
(d**In) for polytrees

Graphical tests for
. independence structure




Summary: Undirected
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Consistency on spatial ~Agreement of label vs.
distribution of labels input data
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* y=decision variable (class label (e.g., road, car, etc...))
* x=observation variable (e.g., image patch)



Undirected: What factors

Factors do not need to be CPTs or
combinations of probabilities

Only condition: non-negative

Intuitively: Potential measuring compatibility
between nodes

But need normalization
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Independence

* Simpler condition:
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 If all paths are blocked by Ethen S; L S, | E
 Purely graphical property independent of actual ¢’s
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* y=decision variable (class label (e.g., road, car, etc...))
 x=observation variable (e.g., image patch)
* Markov property of local dependence



Inference

* General query probability distribution of set of
variables E; given set values of other set E,

* Ingeneral: P(E1|Ey)a Xp, P(xq,.., Xp)
* Example:
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Inference
P(xq,.., %) @ @1(x1)02(x2)03(x3) @4 (X2, X3, X4) 05 (X1, X4, X5)
Conditioned on x5, xc so fix them
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Inference

Eliminate the remaining set (£;) by marginalization
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Inference
P(x4|x2,x5);a z 01(x1) @5 (x1, x4 ) z P3(x3)9 4(x3, x4)

Finish by normalizing to get a proper probability
Possible because “local” probability
Don’t need to normalize before that
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Inference
P(x4|xp, x5)=x 2 01(x1) @5 (x1, x4 ) z P3(x3)9 4(x3, x4)

SRS P

We were able to group the variables
The smaller the group the better
How small can the groups be?




Example: Tree

° 0o

P(xq|ly) = 291512 (71, T2) P23 (T2, Z3)V1 (Y1, T1) VY2 (Y2, T2)¥3(ys3, T3)
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mj; = ijfij(xi; xj) HN(j)\imkj(xj)



* Net result: |x|? operations instead of |x|"
* General procedure with partial sums:

mj; = ij fij(xi:xj) HN(j)\imkj(xj)

* Take arbitrary node as root
— Propagate partial sums from leaves
— Propagate partial sums from root

* Treat factors as nodes, similar approach to
passing partial sums



MAP
* Interested in finding max P(X)

 Same idea for distribution applies except with
max instead of sum

maxP(X) = max @(xq,x2)P(x,x3) @(x3,x4)
X1 X2X3Xy
= max(xy, x;) max @ (xz, x3) max ¢ (x3, x4)
X1,X2 X3 X4

m;i(x;) = max fij (i ) Ty 1 e (xf)
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Exact inference?
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* Back to the initial question:
— Exact inference easy on trees (quadratic)
— Can convert graph to tree with equivalent representation

— But complexity is size of largest node in the equivalent tree
(treewidth+1)

— Finding the tree with minimum treewidth is NP-hard
— Approximations, sampling, loopy BP



Connections

 CSP - all values are 0/1 (= constraints
between variables; P(A|B) = constraints
satisfied when B variables are clamped)

* |ILP = MAP assignment

Yanover, Meltzer, Weiss. Linear programming and BP. IML 7.



Examples:

— Reasoning about visual and text knowledge
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— Reasoning about spatial structure

Is this a face? [Fischler & Elschlager 73]



Image labeling (Loopy BP)

* a=class label (e.g., road, car, etc...)
 b=image data at local patch

Example from Carbonetto, de Freitas & Barnard, ECCV’04



Similar problems but using relations (Above, behind, below,
left, right, beside, bluer, greener, nearer, smaller, larger,

brighter)
n,
r12 r23
ny Lrjs/ v \nB
A J Py
: A i

|

Abhinav Gupta and Larry S. Davis, Beyond Nouns: Exploiting prepositions
and comparative adjectives for learning visual classifiers, ECCV 2008.
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Inference: BP
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Annotation
Segmentation

Classification
Segmentation |

class: PolO

Classification
Annotation

Sky
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Athlete
Horse
Grass
Trees
Sky
Saddle

L.-J. Li, R. Socher and L. Fei-Fei. Towards Total Scene
Understanding:Classification, Annotation and
Segmentation in an Automatic Framework. CVPR2009



Example: Inferring human poses

[= (features from) Input image dat

X; = Pose (location and
orientation) of limb 7

Example from Felzenszwalb’04



General problem: Representing
knowledge about spatial relations
between variables

Is this a face? [Fischler & Elschlager 73



Example
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Agreement of Prior distribution
location with image of shapes

* Max-product: Tree-structure = DP algorithm,
efficient
* Normally N4 but reduction with Gaussian model

for Oij




Sum-product marginals

D. Ramanan. Learning to parse images of articulated bodies. NIPS 2007.



Example

* Variables = locations of landmark points on shape (x;)
+ measurements from image (/)

* Max-product inference

P(XlI)a 1_[ (pij(xi,xj, 9) nFi;xi,I) 1_[ Fij’{Xi,Xj,I)
l,j l l,j

Prior distribution Agreement of Agreement line between
of shapes location with image 2 neighboring landmarks

=T L and image gradients

)
\ Xi
.

G. Heitz, G. Elidan, B. Packer, and D. Koller (2008). "Shape-
Based Object Localization for Descriptive Classification."






