Reasoning with uncertainty



(Very) basic review of probability and
uncertainty

Joint distribution and inference
Exploiting independences
Special case: Directed graphs

General case: Undirected graphs, factor
graphs
Examples



* Deterministic:

— Represent facts and constraints

— Find configuration that satisfies representation
 Examples:

—ClausesAANB = C

— Satisfiability problems
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* Generalization to include uncertainty due to
imperfect knowledge

— Variables: Deterministic 2 Random variables

— Constraints: Deterministic functions (e.g., CNF,
CSP, SAT) = continuous output

e Similar problems, generalization



 What we have: scores from noisy classifiers from local
features (P(label |image features))

e What would like:
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* What we get

o
<
=
—
-
M




Reasoning

Need to use knowledge about the world
Need to integrate uncertainty in “sensing”

Scenes:

— “road scenes” contain “cars”, “building”....
— “Office scenes” contain “desks”, “computers”...
Co-occurrence:

— “keyboard” implies “mouse”
Location:

— “Cars” are on top of “roads”
— “Sky” is above “buildings”



Reasoning with uncertainty

Need use uncertain knowledge about the world

Scenes:

— “road scenes” is likely to contain “cars”, “building”....

— “Office scenes” is likely to contain “desks”, “computers”...
Co-occurrence:

— “keyboard” usually implies “mouse”

Probably possible to represent uncertainty on each
individual piece of knowledge

Intractable to integrate them all to find the “optima
interpretation

IH



Probability Reminder

* Conditional probability for 2 events A and B:
P(A[B) = P(A,B)
P(B)

 Chain rule:
P(A,B) = P(A|B) P(B)



Probability Reminder

e Conditional probability for 2 variables X and Y:
P(X=x | Y=y) = P(X=x,Y=y)
P(Y=y)

 Chain rule:
P(X=x,Y=y) = P(X=x|Y=y) P(Y=y)

* For any values X,y



The Joint Distribution

* Joint distribution = collection of [X|Y|Z |Prob
all the probabilities P(X=xY |T|T|T |0.1
=vy,Z =z...) for all possible TITIE [0.22
combinations of values. TIEIT |02

 For m binary variables, sizeis2™ |T|F|F |0.08

* Any query can be computed from |F|T|T |0.1
the joint distribution FITIF |0.15

FIF|T |0.07
FIFIF [0.08




The Joint Distribution

Any query can be computed from the
joint distribution

Marginal distribution
P(X = True), P(X = False)

Conditional distribution:
P(X=True | Y =True) =
P (X =True,Y = True)/P(Y = True)

In general:
P(E1 | Ez) - P(ElrEz)/P(Ez)

P(E,) = Z P(Joint Entries)

Entries that match E,
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Summary

* Any query computable from
 Sum rule:

 Product rule

But requires entire joint distribution 2
Represent dependencies between variables



First case: Directed

P(a,b) = P(bla)P(a)




First case: Directed

P(X, =X, X, =%X,,... X =X_)=

lm[P(Xi = X. | Parents(X,))

o




Graphical Representation

,1P(E=True) = 0.002

P(B=True) = 0.001 j S

Burglary

B E P(A = True|B=b,E=e)

T T ]0.95

~--|T F |0.94

P(A,J,M) = P(A|B,E)P(B)P(E) F T 029
F F [0.001




Graphical Representation

A|P(J =True|A=a) A|P(M = True|A=a)
T/0.90 T/0.70
F0.05

P(A,J,M) =P(A)P(J|A)P(M]A)



Inference

* Any inference operation of the form P(values of some
variables | values of the other variables) can be

computed P(E=true) = 0.002

Earthqu

Burglary

ake
B E

P(A = True|B=b,E=¢e)

P(B=True) = 0.001

\T T10.95
T F|0.94

A | P(J = True|A=a)

F T]0.29

710.90

0.001

F|0.05

Al P(M = True|A=a)

1/0.70

P(A,J,M,B,E) = P(B)P(E)P(A|B,E)P(J|A)P(M|A) [HO0.01




Example Naive Bayes classification

PG ly) = | [ POxily)



Example

P,(#5710,0.0| F )=0.53

P,(#5710.0.0| not F )=0.56

P,(#3214,0.1| F )=0.57
W 0 1)=#3214 >

P,(#3214,0.1| notF )=0.48

y= 1 if face
* Lots of (discretized) features from local filters
e Estimate likelihood ratio

P(xy,..,xn|ly = face)
P(xq,..,x,|y = not face) - -



D:/05FallCV/Short_BNews_Clip3.mpeg
D:/05FallCV/Short_BNews_Clip1.mpeg

Example

* Need use uncertain knowledge about
the world
* Scenes:

— “road scenes” is likely to contain
“cars”, “building”....

— “Office scenes” is likely to contain
“desks”, “computers”...
* Co-occurrence:

— “keyboard” usually implies “mouse’

)

* Probably possible to represent
uncertainty on each individual piece
of knowledge

* [ntractable to integrate them all to
find the “optimal” interpretation

Examples in the next few slides from: Murphy, Torralba, Freeman; NIPS 2003.
Torralba, Murphy, Freeman, CACM 2010.



Scene
S

Scene
features

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.



Scene

P(N.y | S = street)
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Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.
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Multiview car detector.
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; . 1
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e F =1 if car present in box
/ p(d | F=1)




An integrated model of Scenes, Objects,
and Parts

Scene
features







No miracle: Fancy representation can only
model the knowledge that we encoded.

Example from Antonio Torralba



Inference

Can answer any query but : Need to sum over the
possible assignments of the hidden variables.

— Variable elimination
— Separation

Query variables: E,
Evidence variables: E,
The rest, E,

Gprinkler> (Rain >

P(W | Cloudy = True)

° E1 — {W}
e £, = {Cloudy=True}
e £, ={Sprinkler, Rain}



Inference: A Simple Case

n » »
L > »

e Suppose that we want to compute
P(D =d) from this network.




A Simple Case

n » »
L > »

e Compute P(D =d) by summing the joint
probability over all possible values of the
remaining variables A, B, and C:

P(D=d)= ) P(A=a,B=b,C=c,D=d)

a,b,c




A Simple Case

n » »
L > »

 Decompose the joint by using the fact that it is
the product of terms of the form:

P(X | Parents(X))
P(D=d)=) P(D=d|C=c)P(C=c|B=b)P(B=b|A=a)P(A=a)

a,b,c




A Simple Case

n » »
L > »

 We can avoid computing the sum for all
possible triplets (A,B,C) by distributing the
sums inside the product
P(D=d)=) P(D=d|C=c)) P(C=c|B=h)) P(B=b|A=a)P(A=a)




A Simple Case

n n »
L » »

P(D=d)=ZP(D=d|C=c)ZP(C=c|B=b)‘2P(B=b|A=a)P(A=a)




A Simple Case

n n »
L » »

P(D=d)=ZP(D=d|C=c)‘ZP(C=C|B=b)fA(b)




Example

n
»

P(D=d)=) P(D=d|C=c)P(C=c|B=b,A=a)P(B=b)P(A=a)
:ZP(D:d’ ’C:C)ZP(B:b)Z P(C=c|B=b,A=a)P(A=a)
=Y P(D=d|C=c)) P(B=b)) f,(ab,c)

=Y P(D=d|C=c))_ f,(b,c)




General Case: Variable Elimination

* Write the desired probability as a sum over all
the unassigned variables
P(D=d)=) P(A=a,B=b,C=c,D=d)

a,b,c

* Distribute the sums inside the expression
— Pick a variable

— Group together all the terms that contain this
variable

P(D=d)=) P(D=d|C=¢)) P(C=c|B=b)) P(B=b|A=a)P(A=a)

— Represent as a single function of the variables
appearing in the group

P(D=d)= ZP(D d|C = C)ZP(C c|B=b)f,(b)
— Repeat unt|I no more varlables are left



General Case: Variable Elimination

* Write the desired probability as a sum over all
the unassigned variables

er all the terms that contain this
variabl

P(D=d)=)_P(

|IC=c)) P(C=c|B=b)) P(B=b|A=a)P(A=a)

— Represent as a single function of the variables
appearing in the group
P(D=d)=) P(D=d|C=c)) P(C=c|B=h)f,(h)
C b

— Repeat until no more variables are left



Special Case

* Polytrees: Undirected version of the graph is a tree
= there is a single undirected path between two

nodes
* In this case: Inference linear in the number of nodes (d**n)

* General case: See later approximate inference (e.g.,
sampling)




Conditional independence

* P(any assighments to S| any assignments to
S, ,any assignments to S; ) = P(assignment to
S, | assignments to S,)

* P(any assignments to S, any assignments to S,
|any assignments to S; ) = P(assignment to
S,)P(assignments to S,)

- ~__ 7 N
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Finding independences

 The more independence relations we can find, the
faster the inference = Test to find independences?

O © ©

p(b|c,a) =P(b|lc) alb]|c

p(a,b|lc) = P(alc) P(blc) alb]|c



More General

* How can we find if S; and S, are conditionally independent given

E?
7

- ~__ 7 .
- /\e/\

P (assighments to S, | E and assighments to S,) =
P (assighmentsto S, | E)

* Why is it important and useful?

We can simplify any computation that contains
something like P(S, | E, S,) by P(S; | E)

Intuitively E stands in between or “blocks” S, from
SZ







Blockage: Formal Definition

A path from a node Xto a node Y is blocked by
a set E if either:




General case: Undirected

P(a: b) — (p(a' b) P(Cl, b) — (pl(a)(pZ(b)




P(a,b,c) = ¢,(a,b) ¢,(b,c)




P(a, br C) — (pl(a” b) (pZ(b' C)

a | c| b because all paths between a
and cgo through b




o %2 ¢

P(a,b,c) = @(a,b) p2(b,c) p3(a,c)

P(a,b,c) = ¢(a,b,c)



Factor graphs

1 2

3

P(a,b,c) = ¢,(a,b) ¢,(b,c) ¢3(a,c)

P(a,b,c) = @ (a,b,c)




Directed vs. undirected

o 9 o,

1 3

P(a,b,c) = ¢i(a,b) p,(b,c) ps(a,c)
¢,(a) = P(a) ¢@5(c) =P(c)
@,(a,b,c) = P(bla,c)



N regions
M possible labels

Somehow, there is a
way to estimate how
likely a label is given
image features P([;|f)

We want to find the
assignment of labels
that optimizes

P(ll,..,lle)

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



* Everything is independent:

P, lf) = | [Palp)

Gives really stupid results because it does not
take into account the distribution of likely
relative occurrence of the labels

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



* Everything is dependent:

v

P(ll)")lle)a l_[P(flll)P(ll»»lN)

Hard to learn or represent P(l4,..,ly)

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



<p(li, lj) can be estimated from co-occurrence
statistics from training data

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



MSRC training data

building 75/18 29 336 9 7 1810
| CEX5) 18 93 38 23 15 39 14°7 7 3 i
1(1-3-] 2938 63/ B 1 43/ 6. 42 84" 4
Polel 4 (236 23] 4 4
sheep 15 15 1
sky 333943/4 8615184 '8
aeroplanef ' 15 15
\"EI(d 97 12471 180 434 4
face 4 42111
car 3 4320
bike
flower
sign
bg'd
book
chair
(fer-Te] 431510 2( 25 5 B 7/ 19142
cat

building [~

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007
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A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007



Example: MRF for image Iabeling

* x=image data at Iocal patch

Example from Carbonetto, de Freitas & Barnard, ECCV’04



Example: MRF for image labeling

Consistency on spatial ~ Agreement of label vs.

distribution of labels input data
N
P(x,y) a ®ij Vi, ¥j) 1_[ ©i(x;,¥;i)
L,J i

* y=class label (e.g., road, car, etc...)
* x=image data at local patch



Example: Inferring human poses

X;= Input image data at limb /

:::::

y;=Pose (location and
orientation) of limb 7

* Note: Efficient because
tree-structured

Example from Felzenszwalb’04



