
Reasoning with uncertainty 



• (Very) basic review of probability and 
uncertainty 

• Joint distribution and inference 

• Exploiting independences 

• Special case: Directed graphs 

• General case: Undirected graphs, factor 
graphs 

• Examples 



• Deterministic:  

– Represent facts and constraints 

– Find configuration that satisfies representation 

• Examples: 

– Clauses 𝐴 ∧ 𝐵 ⇒ 𝐶 

– Satisfiability problems 



• Generalization to include uncertainty due to 
imperfect knowledge 

– Variables: Deterministic  Random variables 

– Constraints: Deterministic functions (e.g., CNF, 
CSP, SAT)  continuous output 

• Similar problems, generalization 



car 

building 

road 

Building 

• What we have: scores from noisy classifiers from local 
features (P(label|image features)) 

• What would like: 



• What we get: 

table 

cow 

river 

cat 



Reasoning 

• Need to use knowledge about the world 
• Need to integrate uncertainty in “sensing” 
• Scenes: 

– “road scenes” contain “cars”, “building”…. 
– “Office scenes” contain “desks”, “computers”… 

• Co-occurrence: 
– “keyboard” implies “mouse” 

• Location: 
– “Cars” are on top of “roads” 
– “Sky” is above “buildings” 



Reasoning with uncertainty 

• Need use uncertain knowledge about the world 
• Scenes: 

– “road scenes” is likely  to contain “cars”, “building”…. 
– “Office scenes” is likely to contain “desks”, “computers”… 

• Co-occurrence: 
– “keyboard” usually implies “mouse” 

• …… 
• Probably possible to represent uncertainty on each 

individual piece of knowledge 
• Intractable to integrate them all to find the “optimal” 

interpretation 



Probability Reminder 

• Conditional probability for 2 events A and B: 

P(A|B) = P(A,B) 

               P(B) 

 

• Chain rule: 

P(A,B) = P(A|B) P(B) 



Probability Reminder 

• Conditional probability for 2 variables X and Y: 

P(X=x | Y=y) = P(X=x,Y=y) 

                         P(Y=y) 

 

 

• Chain rule: 

P(X=x,Y=y) = P(X=x|Y=y) P(Y=y) 

 

• For any values x,y 



The Joint Distribution 

• Joint distribution = collection of 
all the probabilities          P(X = x,Y 
= y,Z = z…) for all possible 
combinations of values. 

• For m binary variables, size is 2m 

• Any query can be computed from 
the joint distribution 

X Y Z Prob 

T T T 0.1 

T T F 0.22 

T F T 0.2 

T F F 0.08 

F T T 0.1 

F T F 0.15 

F F T 0.07 

F F F 0.08 



The Joint Distribution 
• Any query can be computed from the 

joint distribution 
• Marginal distribution 

P(X = True), P(X = False) 
 

• Conditional distribution: 
P(X = True | Y = True) = 

P (X = True,Y = True)/P(Y = True) 
 

• In general: 
P(E1 | E2) = P(E1,E2)/P(E2)   

P(E2) = S P(Joint Entries) 
Entries that match E2 

X Y Z Prob 

T T T 0.1 

T T F 0.22 

T F T 0.2 

T F F 0.08 

F T T 0.1 

F T F 0.15 

F F T 0.07 

F F F 0.08 



Summary 

• Any query computable from 

• Sum rule: 

 

• Product rule 

 

 

But requires entire joint distribution  
Represent dependencies between variables 



First case: Directed 

a 

b 

𝑃 𝑎, 𝑏 = 𝑃 𝑏 𝑎 𝑃(𝑎) 



First case: Directed 
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Graphical Representation 

Burglary Earthquake 

Alarm 

P(B=True) = 0.001 

P(E=True) = 0.002 

B  E P(A = True|B=b,E=e) 

T  T 0.95 

T  F 0.94 

F  T 0.29 

F  F 0.001 

P(A,J,M) = P(A|B,E)P(B)P(E) 



Graphical Representation 

JohnCalls MaryCalls 

Alarm 

A P(M = True|A= a) 

T 0.70 

F 0.01 

A P(J = True|A=a) 

T 0.90 

F 0.05 

Given knowledge of A, knowing anything 
else in the diagram won’t help with J and M 

P(A,J,M) = P(A)P(J|A)P(M|A) 



Inference 
• Any inference operation of the form P(values of some 

variables | values of the other variables) can be 
computed 

Burglary Earthquake 

JohnCalls MaryCalls 

Alarm 

P(B=True) = 0.001 

P(E=true) = 0.002 

B  E P(A = True|B=b,E=e) 

T  T 0.95 

T  F 0.94 

F  T 0.29 

F  F 0.001 

A P(J = True|A=a) 

T 0.90 

F 0.05 

A P(M = True|A=a) 

T 0.70 

F 0.01 P(A,J,M,B,E) = P(B)P(E)P(A|B,E)P(J|A)P(M|A) 



Example Naïve Bayes classification 

y= Object 
 label 

x1=  
Feature 1 

xn =  
Feature n 

….. 

𝑃(𝑥1, . . , 𝑥𝑛|𝑦) =   𝑃(𝑥𝑖|𝑦)

𝑖

 



Example 

• Lots of (discretized) features from local filters 

• Estimate likelihood ratio  

𝑃 𝑥1, . . , 𝑥𝑛 𝑦 = 𝑓𝑎𝑐𝑒

𝑃 𝑥1, . . , 𝑥𝑛 𝑦 = 𝑛𝑜𝑡 𝑓𝑎𝑐𝑒
 

F 

F 

not F 

not F 

y = 1  if face 

D:/05FallCV/Short_BNews_Clip3.mpeg
D:/05FallCV/Short_BNews_Clip1.mpeg


Example 

• Need use uncertain knowledge about 
the world 

• Scenes: 
– “road scenes” is likely  to contain 

“cars”, “building”…. 
– “Office scenes” is likely to contain 

“desks”, “computers”… 

• Co-occurrence: 
– “keyboard” usually implies “mouse” 

• …… 
• Probably possible to represent 

uncertainty on each individual piece 
of knowledge 

• Intractable to integrate them all to 
find the “optimal” interpretation 

 

Examples in the next few slides from: Murphy, Torralba, Freeman; NIPS 2003. 

Torralba, Murphy, Freeman, CACM 2010.  



S 

g 

Scene 

Scene 

features 

Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.  
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Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.  



Zcar Ncar 

S 

g 

Scene 

Scene 

features 



screens keyboard 

car pedestrian 



F = 1 if car present in box 

p(d | F=1) 

Multiview car detector.  

xcar
i 

dcar
i 

car 
Fi 

K 



An integrated model of Scenes, Objects, 
and Parts 

Zcar Ncar 

S 

g 

Scene 

Scene 

features xcar
i 

dcar
i 

car 
Fi 





• No miracle: Fancy representation can only 
model the knowledge that we encoded. 

Example from Antonio Torralba 



Inference 
• Can answer any query but : Need to sum over the 

possible assignments of the hidden variables. 
– Variable elimination 

– Separation 

• Query variables: E1 

• Evidence variables: E2 

• The rest, E3 

Cloudy 

Rain 

Wet Grass 

Sprinkler 

P(W | Cloudy = True) 
 
• E1 = {W} 
• E2 = {Cloudy=True} 
• E3 = {Sprinkler, Rain} 

 
 



Inference: A Simple Case 

• Suppose that we want to compute  

P(D = d) from this network. 

A B C D 



A Simple Case 

• Compute P(D = d) by summing the joint 
probability over all possible values of the 
remaining variables A, B, and C:  

A B C D 

 
cba

dDcCbBaAPdDP
,,

),,,()(



A Simple Case 

• Decompose the joint by using the fact that it is 
the product of terms of the form: 

P(X | Parents(X))  

A B C D 

 
cba

aAPaAbBPbBcCPcCdDPdDP
,,

)()|()|()|()(



A Simple Case 

• We can avoid computing the sum for all 
possible triplets (A,B,C) by distributing the 
sums inside the product 

A B C D 

  
c ab

aAPaAbBPbBcCPcCdDPdDP )()|()|()|()(



A Simple Case 

A B C D 

This term depends only on B and 
can be written as a function fA(b) 

  
c ab

aAPaAbBPbBcCPcCdDPdDP )()|()|()|()(



A Simple Case 

A B C D 

)()|()|()( bfbBcCPcCdDPdDP
c

A

b

  

This term depends only on c and 
can be written as a function fB(c) 



Example 
A 

B 

C D 
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General Case: Variable Elimination 
• Write the desired probability as a sum over all 

the unassigned variables 

 

• Distribute the sums inside the expression 

– Pick a variable 

– Group together all the terms that contain this 
variable 

 

– Represent as a single function of the variables 
appearing in the group 

 

– Repeat until no more variables are left 

 
cba

dDcCbBaAPdDP
,,

),,,()(

  
c ab

aAPaAbBPbBcCPcCdDPdDP )()|()|()|()(

)()|()|()( bfbBcCPcCdDPdDP
c

A

b

  



General Case: Variable Elimination 
• Write the desired probability as a sum over all 

the unassigned variables 

 

• Distribute the sums inside the expression 

– Pick a variable 

– Group together all the terms that contain this 
variable 

 

– Represent as a single function of the variables 
appearing in the group 

 

– Repeat until no more variables are left 

 
cba

dDcCbBaAPdDP
,,

),,,()(

  
c ab

aAPaAbBPbBcCPcCdDPdDP )()|()|()|()(

)()|()|()( bfbBcCPcCdDPdDP
c

A

b

  

Computation exponential in the size of the largest 
group  The order in which the variables are 

selected is important. 
 



Special Case 
• Polytrees: Undirected version of the graph is a tree 

= there is a single undirected path between two 
nodes 

• In this case: Inference linear in the number of nodes (dk+1n) 

• General case: See later approximate inference (e.g., 
sampling) 

 



Conditional independence 
• P(any assignments to S1| any assignments to 

S2 ,any assignments to S3 ) = P(assignment to 
S1 | assignments to S3) 

• P(any assignments to S1, any assignments to S2 
|any assignments to S3 ) = P(assignment to 
S1)P(assignments to S2) 

 

S1 S2 S3 



Finding independences 

• The more independence relations we can find, the 
faster the inference  Test to find independences? 

a c b 

  𝑝 𝑏 𝑐, 𝑎 = 𝑃 𝑏 𝑐        𝑎 ⟘ 𝑏 | 𝑐  

a 

c 

b 

  𝑝 𝑎, 𝑏 𝑐 = 𝑃 𝑎 𝑐  𝑃(𝑏|𝑐)      𝑎 ⟘ 𝑏 | 𝑐  



More General 
• How can we find if S1 and S2 are conditionally independent given 

E? 

 

 

 

 

 

• Why is it important and useful? 

We can simplify any computation that contains 
something like P(S1 | E , S2) by P(S1 | E) 

Intuitively E stands in between or “blocks” S1 from 
S2 

P (assignments to S1 | E and assignments to S2) =  
P (assignments to S1 | E) 

S1 S2 E 



X Y …….. …….. 

X Y …….. …….. 

X Y …….. …….. 



Blockage: Formal Definition 
• A path from a node X to a node Y is blocked by 

a set E if either: 

X Y …….. …….. 

X Y …….. …….. 

X Y …….. …….. 

(1) 

(2) 

(3) 

The path passes 
through one node 
from E 

The path passes 
through one node 
from E with diverging 
arrows 

The path has converging 
arrows on a node such 
that it is not in E and 
neither are its 
descendents   



General case: Undirected 

𝑃 𝑎, 𝑏 =  𝜑(𝑎, 𝑏)  

a b 

𝑃 𝑎, 𝑏 =  𝜑1 𝑎 𝜑2(𝑏) 

a b 



𝑃 𝑎, 𝑏, 𝑐 =  𝜑1(𝑎, 𝑏) 𝜑2(𝑏, 𝑐)  

a b c 



𝑃 𝑎, 𝑏, 𝑐 =  𝜑1(𝑎, 𝑏) 𝜑2(𝑏, 𝑐)  

𝑎 ⟘c|b  because all paths between a 
and c go through b 

 

 

a b c 



𝑃 𝑎, 𝑏, 𝑐 =  𝜑1(𝑎, 𝑏) 𝜑2(𝑏, 𝑐) 𝜑3 𝑎, 𝑐  

 

 𝑃 𝑎, 𝑏, 𝑐 =  𝜑
 
(𝑎, 𝑏, 𝑐) 

a 

b 

c 



𝑃 𝑎, 𝑏, 𝑐 =  𝜑1(𝑎, 𝑏) 𝜑2(𝑏, 𝑐) 𝜑3 𝑎, 𝑐  

 

a 

b 

c 

Factor graphs 
1 2 

3 

𝑃 𝑎, 𝑏, 𝑐 =  𝜑
 
(𝑎, 𝑏, 𝑐) 

 

a 

b 

c 

2 

3 



Directed vs. undirected 

  

a 

b 

c 

a 

b 

c 

1 
2 

3 

𝑃 𝑎, 𝑏, 𝑐 =  𝜑1(𝑎, 𝑏) 𝜑2(𝑏, 𝑐) 𝜑3 𝑎, 𝑐  

𝜑1 𝑎 = 𝑃 𝑎    𝜑3 𝑐 = 𝑃 𝑐  

       𝜑2 𝑎, 𝑏, 𝑐 = 𝑃(𝑏|𝑎, 𝑐)  

 

 

 



• N regions 

• M possible labels 

• Somehow, there is a 
way to estimate how 
likely a label is given 
image features 𝑃(𝑙𝑖|𝑓)  

• We want to find the 
assignment of labels 
that optimizes 
𝑃(𝑙1, . . , 𝑙𝑁|𝑓) 

car, table 

cow, building 

road, river 

Building, cat 

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 



• Everything is independent: 

 

 

𝑃 𝑙1, . . , 𝑙𝑁|𝑓 =   𝑃 𝑙𝑖 𝑓) 

Gives really stupid results because it does not 
take into account the distribution of likely 
relative occurrence of the labels 

𝑙1 𝑙𝑁 ………… 

car, table 

cow, building 

road, river 

Building, cat 

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 



• Everything is dependent: 

 

 

𝑃 𝑙1, . . , 𝑙𝑁|𝑓 𝛼  𝑃 𝑓 𝑙𝑖)𝑃 𝑙1, . . , 𝑙𝑁  

Hard to learn or represent 𝑃 𝑙1, . . , 𝑙𝑁  

car, table 

cow, building 

road, river 

Building, cat 

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 



• Factor pairwise dependencies: 

 

 

𝑃 𝑙1, . . , 𝑙𝑁 =  𝜑 𝑙𝑖 , 𝑙𝑗  

𝜑 𝑙𝑖 , 𝑙𝑗   can be estimated from co-occurrence 

statistics from training data 

car, table 

cow, building 

road, river 

Building, cat 

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 



A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 
56 



A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora and S. Belongie. Objects in Context. ICCV 2007 
57 



Example: MRF for image labeling 

• y = class label (e.g., road, car, etc…) 

• x = image data at local patch  

xi 

yi 

xj 

yj 

Example from Carbonetto, de Freitas & Barnard, ECCV’04 



Example: MRF for image labeling 

• y = class label (e.g., road, car, etc…) 

• x = image data at local patch  

xi 

yi 

xj 

yj 

𝑃 𝑥, 𝑦  𝛼  𝜑𝑖𝑗(𝑦𝑖 , 𝑦𝑗)

𝑖,𝑗

 𝜑𝑖(𝑥𝑖 , 𝑦𝑖)

𝑖

 

 

Consistency on spatial 
distribution of labels 

Agreement of label vs. 
input data 



Example: Inferring human poses 

• Note: Efficient because 
tree-structured  

Example from Felzenszwalb’04 

xi = Input image data at limb i  

yi = Pose (location and 
orientation) of limb i  


