Reasoning with uncertainty

- (Very) basic review of probability and uncertainty
- Joint distribution and inference
- Exploiting independences
- Special case: Directed graphs
- General case: Undirected graphs, factor graphs
- Examples

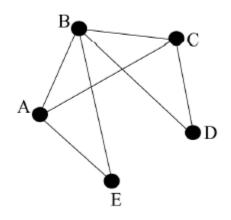
• Deterministic:

- Represent facts and constraints
- Find configuration that satisfies representation

Examples:

- Clauses $A \wedge B \Rightarrow C$
- Satisfiability problems

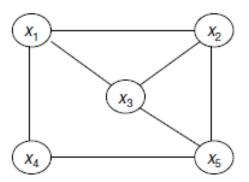
$$\varphi = \{ (\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D) \}.$$



$$f_1(x_1, x_2, x_3)$$

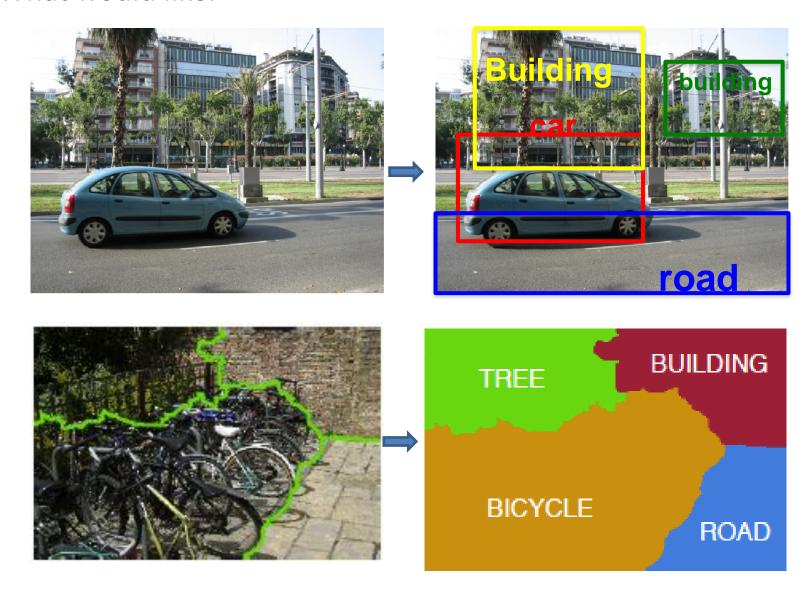
 $f_2(x_2, x_3, x_5)$
 $f_3(x_1, x_4)$
 $f_4(x_4, x_5)$

$$\min_{t \in Sol} \{ \sum_{i=1}^{m'} f_i(t) \}$$



- Generalization to include uncertainty due to imperfect knowledge
 - Variables: Deterministic → Random variables
 - Constraints: Deterministic functions (e.g., CNF,
 CSP, SAT) → continuous output
- Similar problems, generalization

- What we have: scores from noisy classifiers from local features (P(label|image features))
- What would like:



What we get:

Reasoning

- Need to use knowledge about the world
- Need to integrate uncertainty in "sensing"
- Scenes:
 - "road scenes" contain "cars", "building"....
 - "Office scenes" contain "desks", "computers"...
- Co-occurrence:
 - "keyboard" implies "mouse"
- Location:
 - "Cars" are on top of "roads"
 - "Sky" is above "buildings"

Reasoning with uncertainty

- Need use uncertain knowledge about the world
- Scenes:
 - "road scenes" is likely to contain "cars", "building"....
 - "Office scenes" is likely to contain "desks", "computers"...
- Co-occurrence:
 - "keyboard" usually implies "mouse"
- •
- Probably possible to represent uncertainty on each individual piece of knowledge
- Intractable to integrate them all to find the "optimal" interpretation

Probability Reminder

Conditional probability for 2 events A and B:

$$P(A|B) = P(A,B)$$

$$P(B)$$

Chain rule:

$$P(A,B) = P(A|B) P(B)$$

Probability Reminder

Conditional probability for 2 variables X and Y:

$$P(X=x \mid Y=y) = P(X=x,Y=y)$$

$$P(Y=y)$$

Chain rule:

$$P(X=x,Y=y) = P(X=x | Y=y) P(Y=y)$$

For any values x,y

The Joint Distribution

- Joint distribution = collection of all the probabilities P(X = x,Y = y,Z = z...) for all possible combinations of values.
- For m binary variables, size is 2^m
- Any query can be computed from the joint distribution

X	>	Z	Prob
\vdash	\vdash	\vdash	0.1
\vdash	Τ	ĹĹ	0.22
\vdash	ш	\vdash	0.2
\vdash	ш	ш	0.08
H	\vdash	_	0.1
F	Т	F	0.15
F	F	Т	0.07
F	F	F	0.08

The Joint Distribution

- Any query can be computed from the joint distribution
- Marginal distribution

$$P(X = True), P(X = False)$$

Conditional distribution:

• In general:

$$P(E_1 | E_2) = P(E_1, E_2)/P(E_2)$$

$$P(E_2) = \sum P(Joint Entries)$$

Entries that match E₂

X	Y	Z	Prob
Т	Т	Т	0.1
Т	Т	F	0.22
Т	F	Т	0.2
Τ	IЕ	H	0.08
F	Т	Т	0.1
F	Т	F	0.15
L	L	Т	0.07
F	F	F	0.08

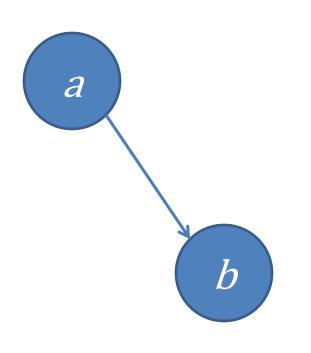
Summary

- Any query computable from
- Sum rule:

Product rule

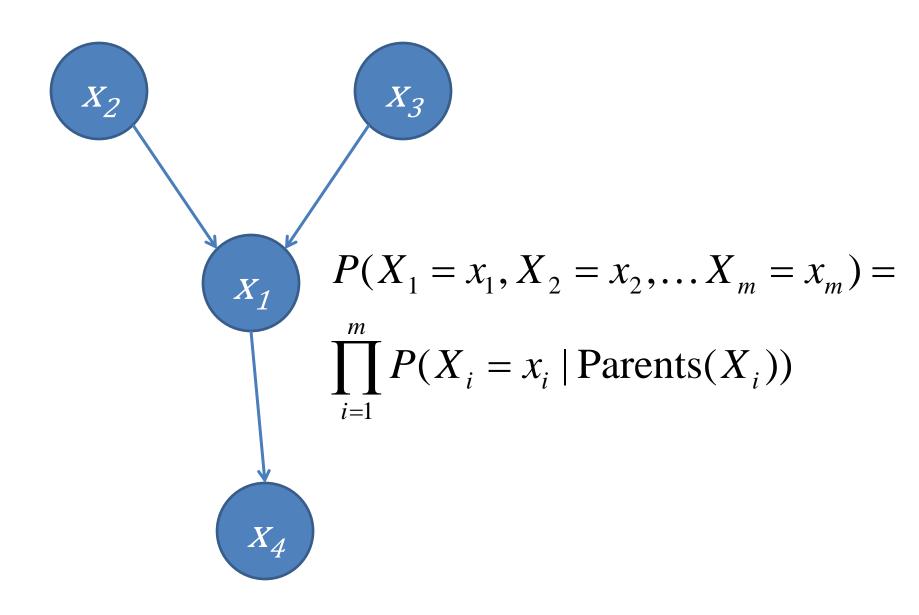
But requires entire joint distribution \rightarrow Represent dependencies between variables

First case: Directed

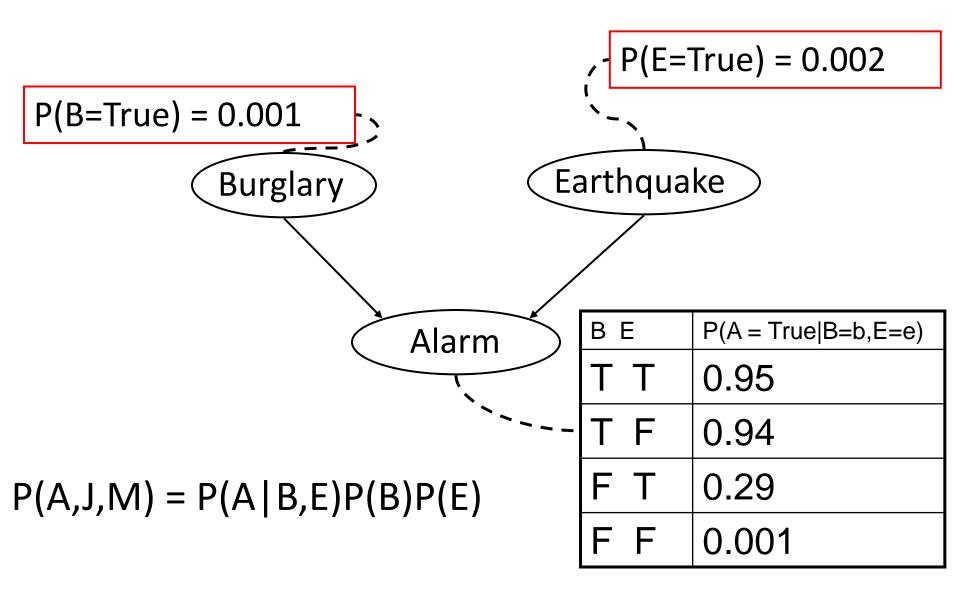


$$P(a,b) = P(b|a)P(a)$$

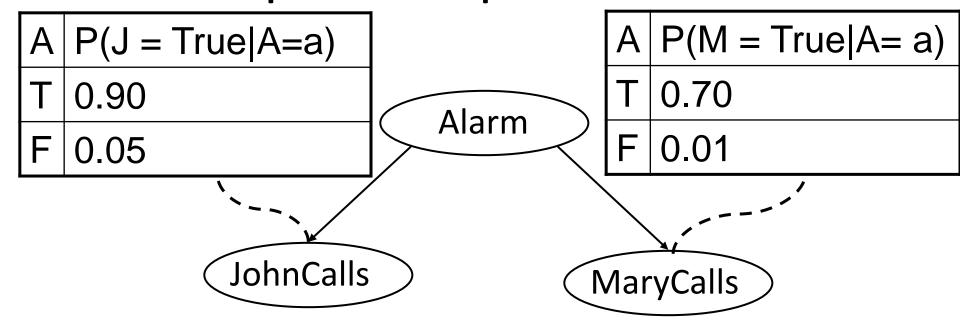
First case: Directed



Graphical Representation



Graphical Representation

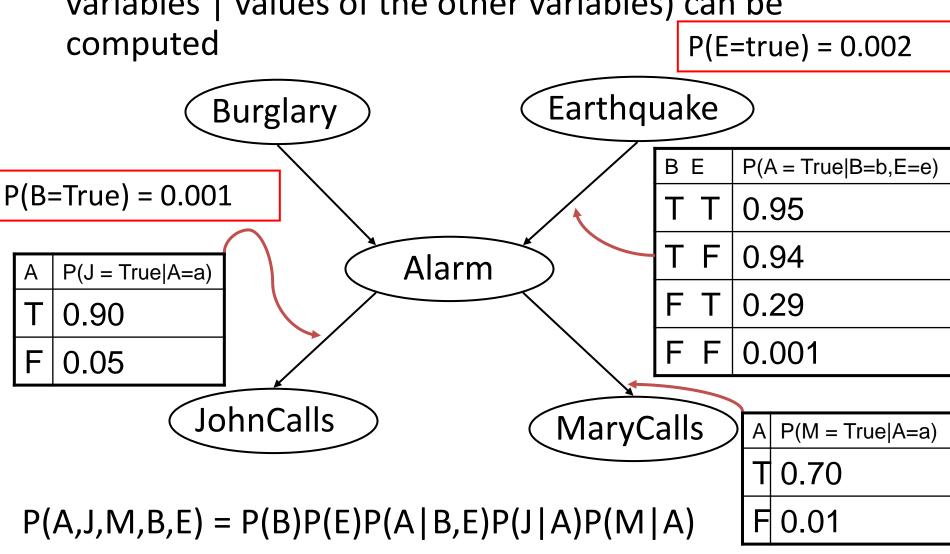


Given knowledge of A, knowing anything else in the diagram won't help with J and M

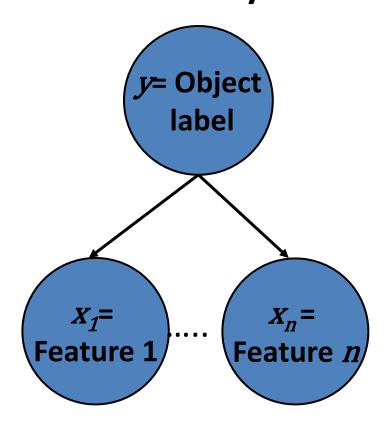
$$P(A,J,M) = P(A)P(J|A)P(M|A)$$

Inference

Any inference operation of the form P(values of some variables | values of the other variables) can be



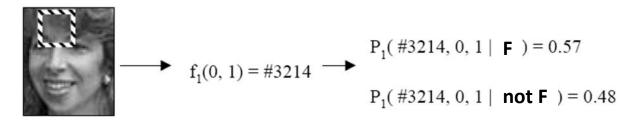
Example Naïve Bayes classification



$$P(x_1,...,x_n|y) = \prod_i P(x_i|y)$$

Example





y=1 if face

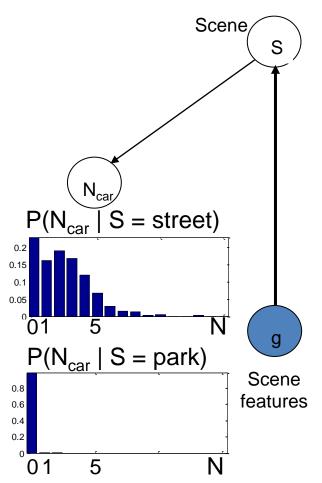
- Lots of (discretized) features from local filters
- Estimate likelihood ratio

$$\frac{P(x_1,...,x_n|y=face)}{P(x_1,...,x_n|y=not\ face)}$$

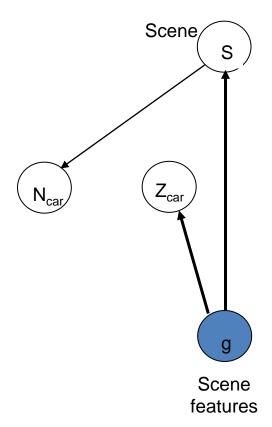
Example

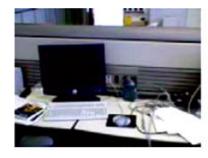
- Need use uncertain knowledge about the world
- Scenes:
 - "road scenes" is likely to contain "cars", "building"....
 - "Office scenes" is likely to contain "desks", "computers"...
- Co-occurrence:
 - "keyboard" usually implies "mouse"
- •
- Probably possible to represent uncertainty on each individual piece of knowledge
- Intractable to integrate them all to find the "optimal" interpretation

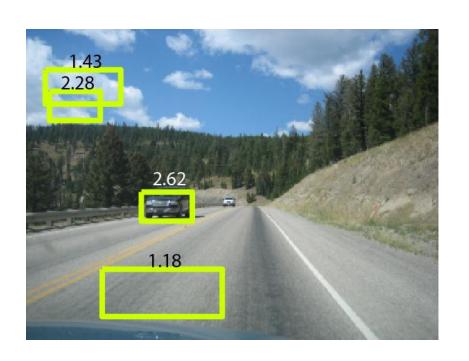




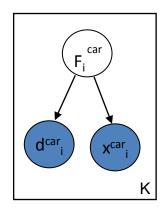
Murphy, Torralba, Freeman; NIPS 2003. Torralba, Murphy, Freeman, CACM 2010.





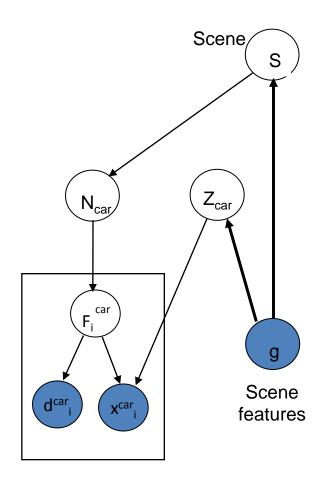


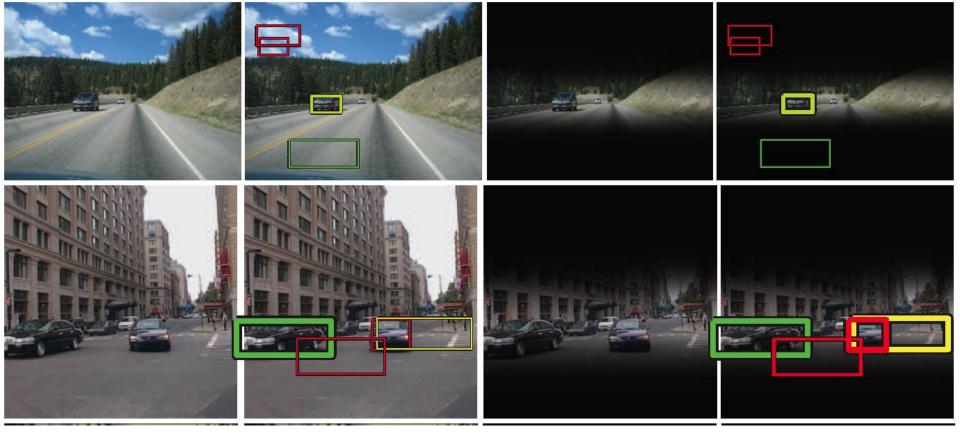
Multiview car detector.



F = 1 if car present in box p(d | F=1)

An integrated model of Scenes, Objects, and Parts

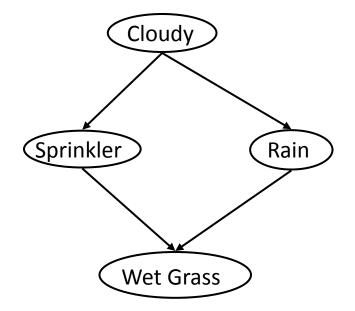




 No miracle: Fancy representation can only model the knowledge that we encoded.

Inference

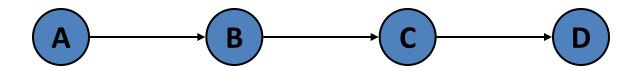
- Can answer any query but: Need to sum over the possible assignments of the hidden variables.
 - Variable elimination
 - Separation
- Query variables: E₁
- Evidence variables: E₂
- The rest, E₃



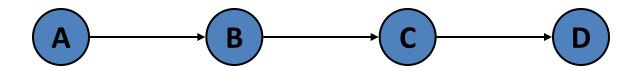
P(W | Cloudy = True)

- E₁ = {W}
- E₂ = {Cloudy=True}
- E₃ = {Sprinkler, Rain}

Inference: A Simple Case

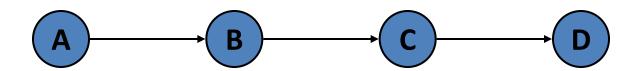


Suppose that we want to compute
 P(D = d) from this network.



 Compute P(D = d) by summing the joint probability over all possible values of the remaining variables A, B, and C:

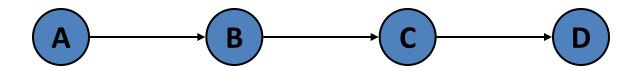
$$P(D=d) = \sum_{a,b,c} P(A=a,B=b,C=c,D=d)$$



 Decompose the joint by using the fact that it is the product of terms of the form:

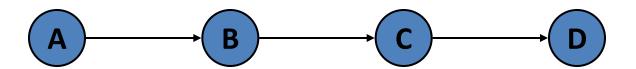
P(X | Parents(X))

$$P(D=d) = \sum_{a,b,c} P(D=d \mid C=c) P(C=c \mid B=b) P(B=b \mid A=a) P(A=a)$$



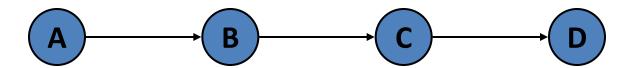
 We can avoid computing the sum for all possible triplets (A,B,C) by distributing the sums inside the product

$$P(D=d) = \sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)$$



This term depends only on B and can be written as a function $f_A(b)$

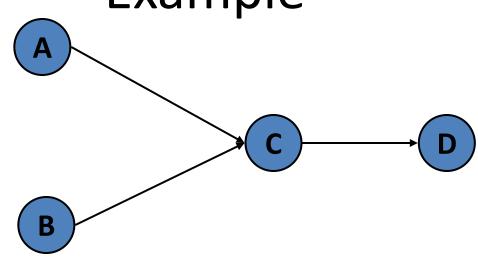
$$P(D=d) = \sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)$$



This term depends only on c and can be written as a function $f_B(c)$

$$P(D=d) = \sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) f_{A}(b)$$

Example



$$P(D=d) = \sum_{a,b,c} P(D=d | C=c) P(C=c | B=b, A=a) P(B=b) P(A=a)$$

$$= \sum_{c} P(D = d \mid C = c) \sum_{b} P(B = b) \sum_{c} P(C = c \mid B = b, A = a) P(A = a)$$

$$= \sum_{c} P(D = d \mid C = c) \sum_{b} P(B = b) \sum_{a} f_{1}(a, b, c)$$

$$= \sum_{c} P(D = d \mid C = c) \sum_{c} f_{2}(b, c)$$

General Case: Variable Elimination

 Write the desired probability as a sum over all the unassigned variables

$$P(D=d) = \sum_{a,b,c} P(A=a,B=b,C=c,D=d)$$

- Distribute the sums inside the expression
 - Pick a variable
 - Group together all the terms that contain this variable

$$P(D=d) = \sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)$$

Represent as a single function of the variables appearing in the group

$$P(D=d) = \sum_{b} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) f_A(b)$$

- Repeat until no more variables are left

General Case: Variable Elimination

 Write the desired probability as a sum over all the unassigned variables

Computation exponential in the size of the largest group → The order in which the variables are selected is important.

on

Group er all the terms that contain this variable

$$P(D=d) = \sum_{c} P(D=d) = \sum_{c} P(C=c \mid B=b) \sum_{a} P(B=b \mid A=a) P(A=a)$$

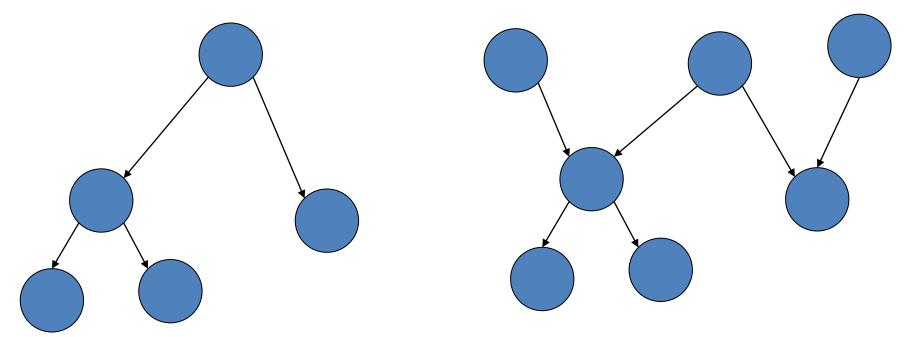
Represent as a single function of the variables appearing in the group

$$P(D=d) = \sum_{c} P(D=d \mid C=c) \sum_{b} P(C=c \mid B=b) f_A(b)$$

- Repeat until no more variables are left

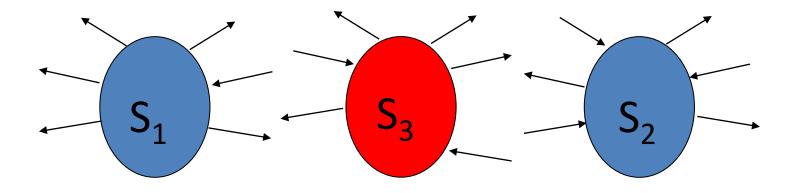
Special Case

- Polytrees: Undirected version of the graph is a tree
 there is a single undirected path between two
 nodes
- In this case: Inference linear in the number of nodes $(d^{k+1}n)$
- General case: See later approximate inference (e.g., sampling)



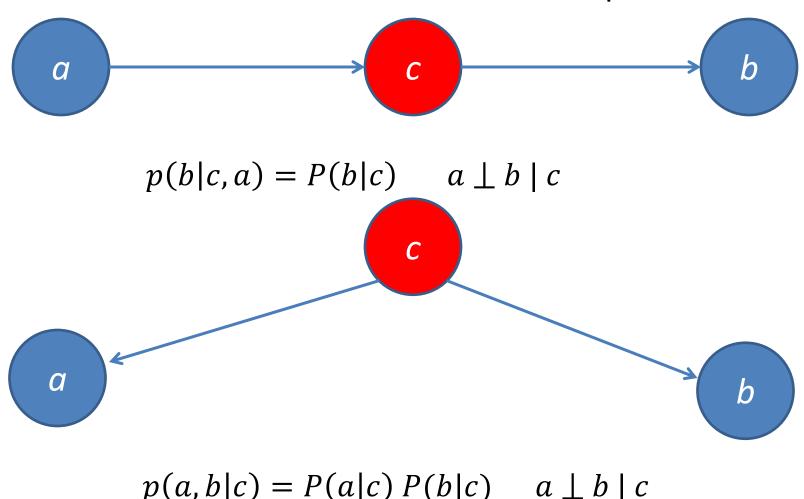
Conditional independence

- P(any assignments to S_1 any assignments to S_2 , any assignments to S_3) = P(assignment to S_1 assignments to S_3)
- P(any assignments to $S_{1,}$ any assignments to S_{2} | any assignments to S_{3}) = P(assignment to S_{1})P(assignments to S_{2})



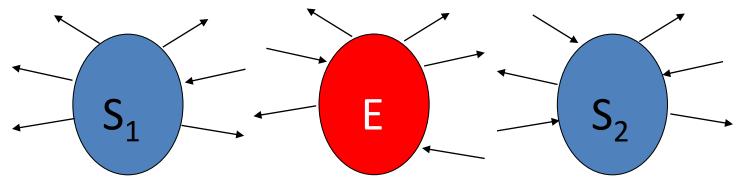
Finding independences

 The more independence relations we can find, the faster the inference → Test to find independences?



More General

How can we find if S₁ and S₂ are conditionally independent given
 E?

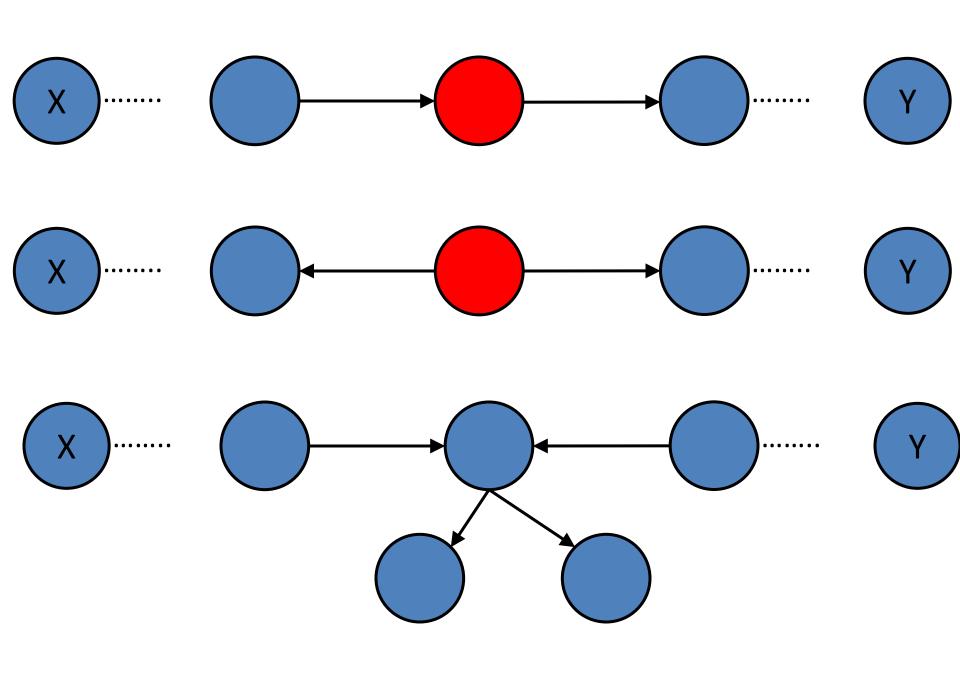


P (assignments to $S_1 \mid E$ and assignments to $S_2 \mid E$) = P (assignments to $S_1 \mid E$)

Why is it important and useful?

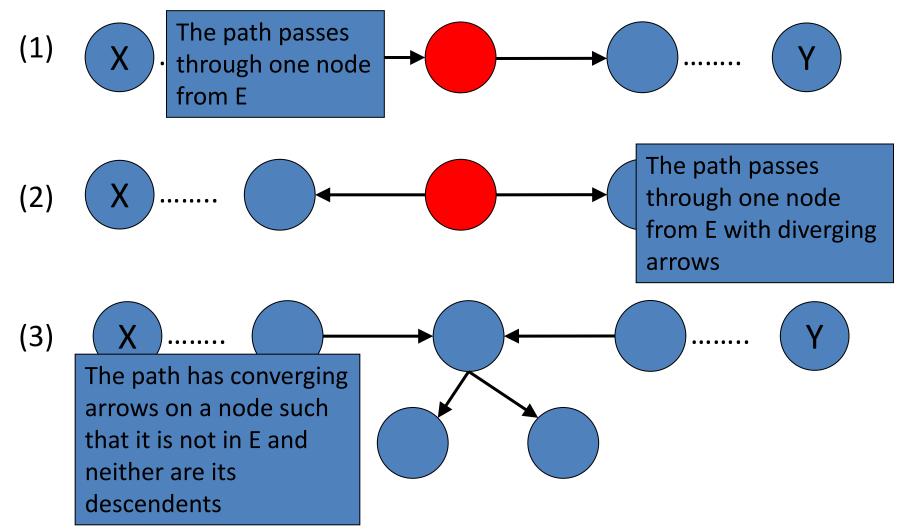
We can simplify any computation that contains something like $P(S_1 \mid E, S_2)$ by $P(S_1 \mid E)$

Intuitively E stands in between or "blocks" S_1 from S_2



Blockage: Formal Definition

 A path from a node X to a node Y is blocked by a set E if either:



General case: Undirected

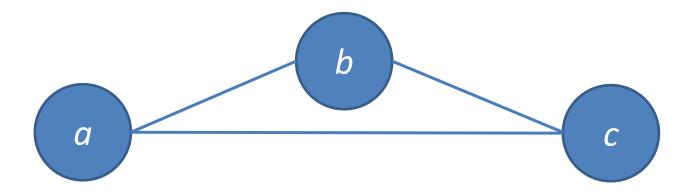
$$P(a,b) = \varphi(a,b) \qquad P(a,b) = \varphi_1(a)\varphi_2(b)$$

(a) (b) (c)

$$P(a,b,c) = \varphi_1(a,b) \varphi_2(b,c)$$

(a) (b) (c)

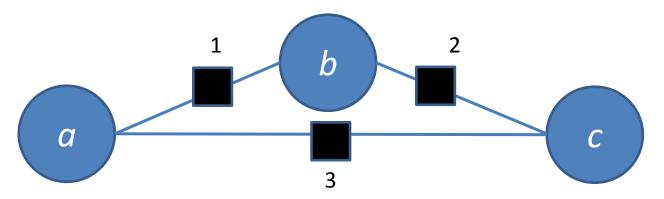
 $P(a,b,c) = \varphi_1(a,b) \, \varphi_2(b,c)$ $a \perp c \mid b$ because all paths between aand c go through b



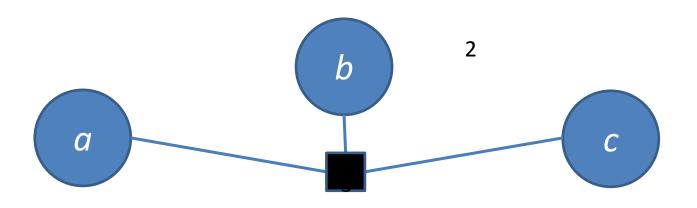
$$P(a,b,c) = \varphi_1(a,b) \varphi_2(b,c) \varphi_3(a,c)$$

$$P(a,b,c) = \varphi(a,b,c)$$

Factor graphs

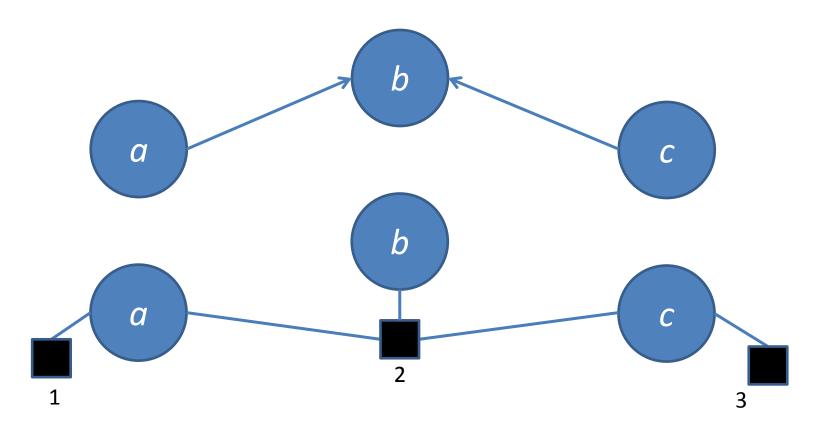


$$P(a,b,c) = \varphi_1(a,b) \varphi_2(b,c) \varphi_3(a,c)$$



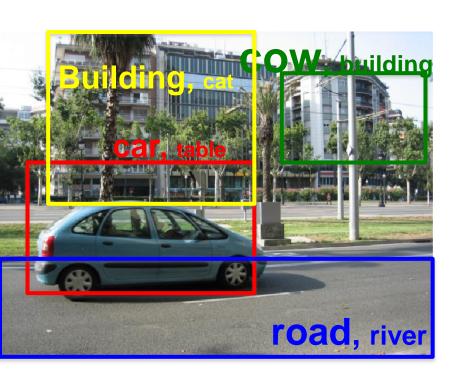
$$P(a,b,c) = \varphi(a,b,c)$$

Directed vs. undirected



$$P(a,b,c) = \varphi_1(a,b) \varphi_2(b,c) \varphi_3(a,c)$$

 $\varphi_1(a) = P(a) \varphi_3(c) = P(c)$
 $\varphi_2(a,b,c) = P(b|a,c)$



- N regions
- M possible labels
- Somehow, there is a way to estimate how likely a label is given image features $P(l_i|f)$
- We want to find the assignment of labels that optimizes $P(l_1, ..., l_N | f)$

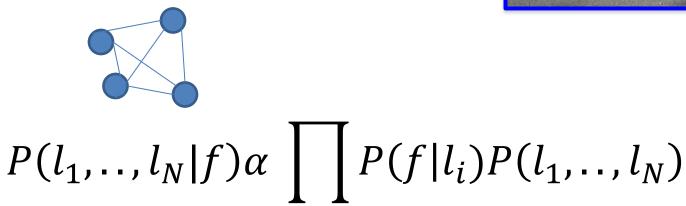
Carland Carlo Service Carland Carlo Service Carland Carlo Service Carlo

Everything is independent:

$$P(l_1, \dots, l_N | f) = \prod_{i=1}^{N} P(l_i | f)$$

Gives really stupid results because it does not take into account the distribution of likely relative occurrence of the labels

Everything is dependent:



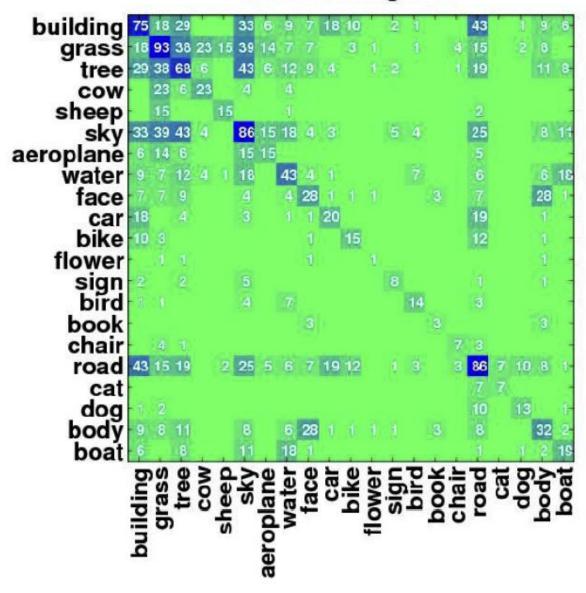
Hard to learn or represent $P(l_1, ..., l_N)$

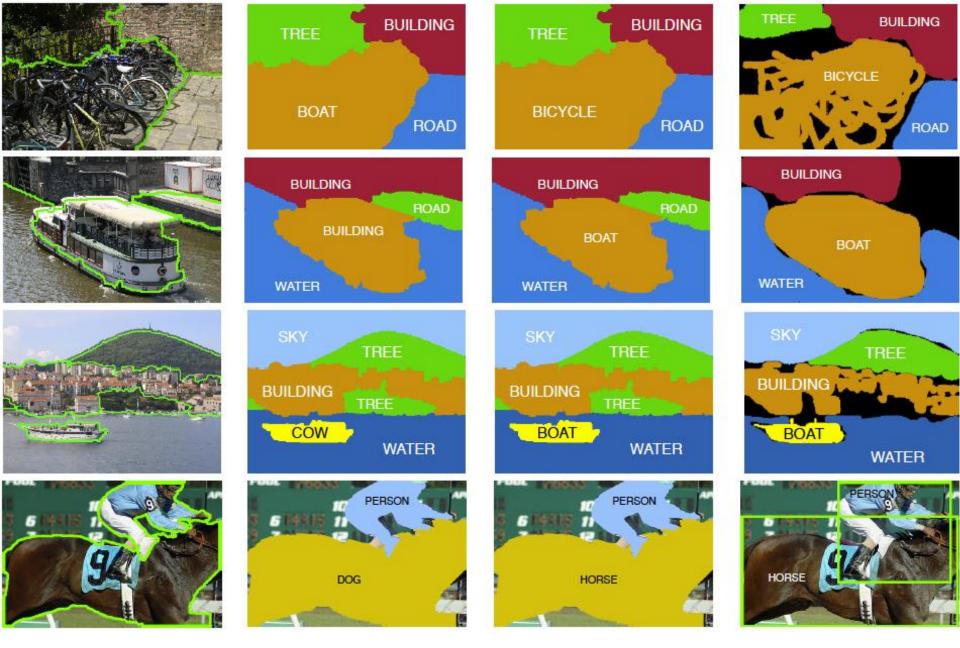
Factor pairwise dependencies:

$$P(l_1,\ldots,l_N) = \left[\varphi(l_i,l_j) \right]$$

 $arphiig(l_i,l_jig)$ can be estimated from co-occurrence statistics from training data

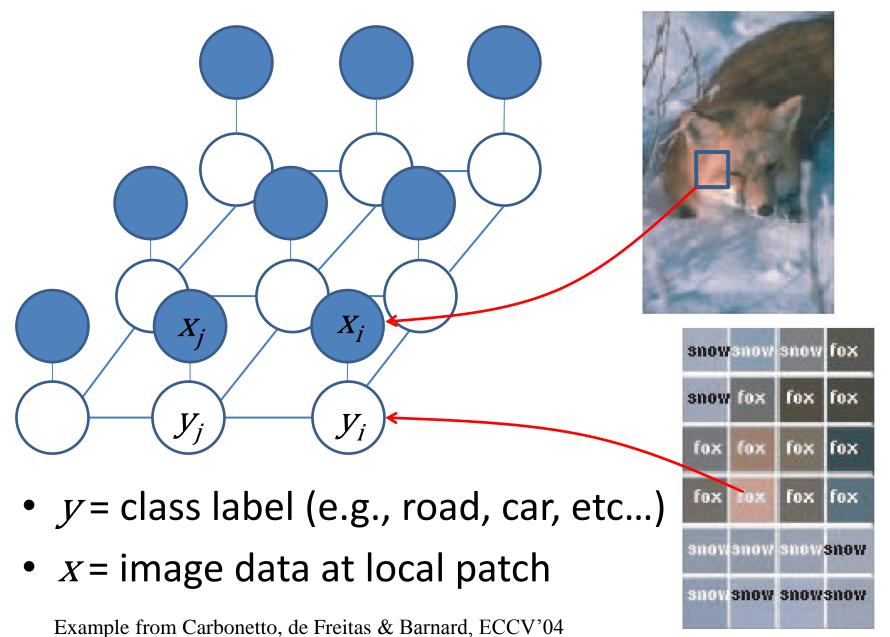
MSRC training data



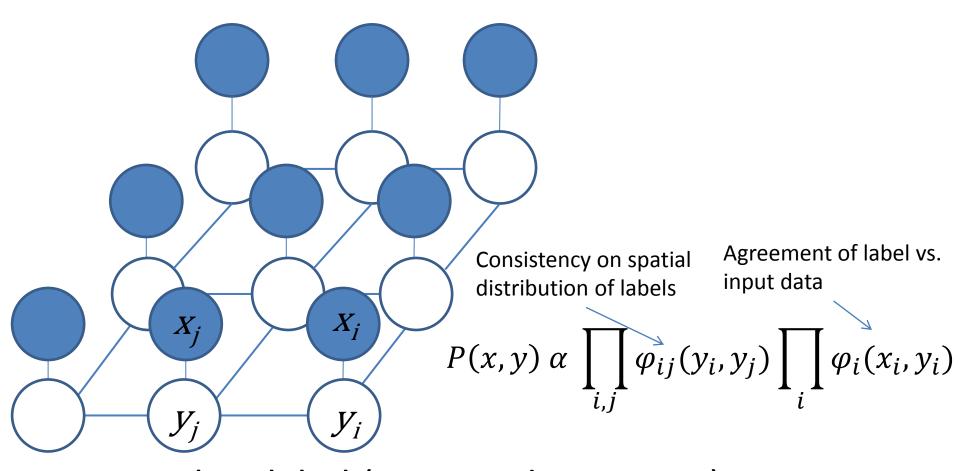


57

Example: MRF for image labeling

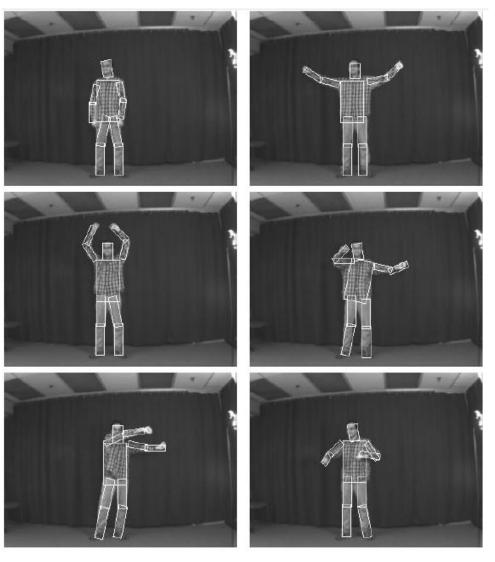


Example: MRF for image labeling



- y = class label (e.g., road, car, etc...)
- X = image data at local patch

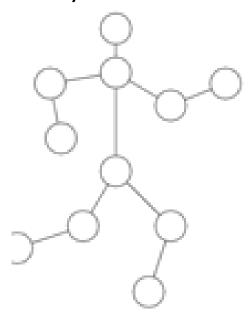
Example: Inferring human poses



Example from Felzenszwalb'04

 X_i = Input image data at limb i

 y_i = Pose (location and orientation) of limb i



 Note: Efficient because tree-structured