TBA

Examples from 1) Likhachev & Ferguson 2) C. Urmson et al., Tartan Team

Focus on two things: Sampling for perception Planning

Perception: Static

- Multiple algorithms from LIDAR fused
 - Spatially: Filter out spurious detections
 - Temporally: Filter out moving objects
- Specialized detectors for curbs, road boundaries

Perception: Roads (application of sampling)

$$y(x) = y_0 + tan(\phi)x + C_0 \frac{x^2}{2} + C_1 \frac{x^3}{6}$$

$$X = [y_o \phi C_o C_1 w]$$

- Observation Z from sensor data
- Find X: max_X p(X|Z)
- Problem: Cannot represent distribution explicitly
- · Solution: sampling

Peterson et al., IROS2009

Input from sensing: Z

Curb detection (potential boundaries)

Roughness/ edge density

- Particle filters/sampling: Good way to handle hard-to-model noisy perception
- Very fast (keeps up with driving speed)

SIR Sampling: Define likelihood for which to sample

- Minimize number of obstacles within X
- Minimize roughness of X
- Minimize distance between boundaries of X and predicted boundaries

SIR Sampling: Define likelihood for which to sample

- $E_o(X) = \text{Number of obstacles cells within } X$
- $E_r(X)$ = Number of obstacles cells within X (roughness)
- $E_{br}(X) = \text{Sum of distances between right boundary of } X$ and detected boundaries
- $E_{bl}(X) = \text{Sum of distances between right boundary of } X$ and detected boundaries
- $E(X) = [E_o(X) E_r(X) E_{br}(X) E_{bl}(X)]$

Reminder: Importance sampling

Evaluating expectation from p not normalized so instead:

$$E_P(f) = \frac{1}{Z} \int f(x) \; \frac{\tilde{p}(x)}{q(x)} q(x) \approx \frac{1}{Z} \frac{1}{N} \sum_i f(x_i) \frac{\tilde{p}(x_i)}{q(x_i)}$$

For
$$f = 1$$
: $\frac{1}{Z} \frac{1}{N} \sum_{i} \frac{\tilde{p}(x_i)}{q(x_i)} = 1$

•
$$E_P(f) \approx \sum_i f(x_i) \underline{w_i} \quad w_i = \frac{\tilde{p}(x_i)}{q(x_i)} / (\sum_l \tilde{p}(x_l) / q(x_l))$$

If x_i are sampled from q

"Importance" of x_i

Compromise: SIR

- Fine to evaluate expectation but we may want to draw actual samples
- Draw N samples x_i, w_i (with normalized w_i)
- Draw again N samples from $(x_1,...,x_N)$ using distribution $(w_1,...,w_N)$
- · Basically: Smart way of reject samples with low weight
- Guaranteed to converge to p when $N \rightarrow \infty$

Perception: Dynamic

- Detection from multiple sensors
- Fusion of hypotheses
- Tracking filter using context knowledge
 - Road
 - Intersection
 - Zone

- Behavior selection from mission description in 3 contexts: Road, intersection, zone
- · Goal state generation from behaviors

Basic planning loop

First case: Short-horizon planning (e.g., road tracking)

- Moving goal G
- Dynamically generate a family of feasible trajectories $\{t_n\}$
- Also "pure pursuit", "receding horizon"

Howard & Kelly. Optimal trajectory generation. IJRR. 2007

- Two sets of trajectories
- Select lowest cost trajectory
- Distance from obstacles/lane boundaries

Second case: Long-horizon planning e.g.: Maneuvers, zone planning, unstructured roads

- Use standard planning technique (A*, D*, etc.)
- Problem: Car has kinematic and dynamic constraints
 - Curvature constraints (turning radius)
 - Speed vs. curvature constraints (if speed high enough)
- Given state s only subset if control input u is allowed

Lattice representation

- Graph of states connected by feasible actions
- States:
 - $-s = (x, y, \theta, v) v$ = translation velocity (forward/backward)
- Actions:
 - For each s: generate the subset of states at distance d that are reachable by a valid trajectory (solved using the previous technique for short-term goals)
 - Reduction: Eliminate redundant actions

Pivtoraiko & Kelly. Generation near optimal spanning control sets....IROS 2005.

Lattice representation

- Planning in that graph, but:
 - 1. Combinatorics look bad
 - Bounded amount of time to make decision → Anytime planning
 - Environment changes because obstacles are discovered → Dynamic planning
 - 4. What admissible heuristics (in the A* sense)?

1. Combinatorics

· Observation:

- Need detailed, high-resolution sampling of the actions at the start and goal but not in between
- Implementation (multiresolution graph):
 - Generate "high-resolution" action graph ${\cal A}_h$
 - Subsample action set far from goal and start $A_l \subset A_h$

Guarantees:

- Any path in a lower resolution action graph is a valid path in the multiresolution graph)
- Any path in the multiresolution graph is a valid path in a high-resolution action graph

1. Combinatorics: Multi-resolution

- · Observation:
 - Need detailed, high-resolution sampling of the actions at the start and goal but not in between
- Implementation (multiresolution graph):
 - Generate "high-resolution" action graph A_h
 - Subsample action set far from goal and start $A_l \subset A_h$
- Guarantees:
 - Any path in a lower resolution action graph is a valid path in the multiresolution graph)
 - Any path in the multiresolution graph is a valid path in a high-resolution action graph

1. Combinatorics: Multi-resolution

	Expansions	Time
High res	2933	0.19
Low res	1228	0.06

2. Anytime

- Car keeps moving continuously and can't stop and wait until plan is complete
- Need answer within some bounded time which may not be enough for full path
- Anytime version of A*:
 - Assume heuristic h(.) is given
 - Plan with $\varepsilon h(.)$ instead of \rightarrow Fast but sub-optimal solution
 - Decrease $\varepsilon \rightarrow$ Increasingly better solution, converging to optimal

2. Anytime

2. Anytime

3. Dynamic

- New obstacles are detected continuously as car moves
- *Dynamic* obstacles change continuously
- Solution: Add dynamic repairing component to the anytime version (e.g., D*)

3. Dynamic

- New obstacles are detected continuously as car moves
- Dynamic obstacles change continuously
- Solution: Add dynamic repairing component to the anytime version (e.g., D*)
- set ε to large value
- · until goal is reached
 - ComputePathReuse() (weighted εA^*)
 - Follow the path until world is updated with new information
 - Update the corresponding edge costs
 - Set s_{start} to the current state of the agent
 - If "significant" changes were observed
 - increase ε or replan from scratch
 - else
 - decrease ε

3. Dynamic: Discovering obstacles

200m x 200m

3. Dynamic: Complex maneuvers

4. Heuristics

- Everything depends on admissible h(.)
- h(.) needs to be admissible and consistent $h(s) + c(s, s') \ge h(s')$
- Two types of factors can be used to evaluate the cost of the path:
 - Mechanism constraints (action graph)
 - Environment constraints (obstacles)

4.a Mechanism Heuristics

- Compute the path from start to goal using:
 - Full action-state graph
 - With no obstacles
- Expensive but:
 - Can be pre-computed once offline!
- Fully integrates the physical constraints of the problem
- · But can grossly underestimate the path cost

4.b Environment Heuristics

- Ignore the mechanism constraints
- Compute path in 2-D (x,y) grid
- Has be to done online, but very fast
- Accounts for obstacles but may still grossly underestimate by using mechanically infeasible paths

4. Heuristics

4. Heuristics

	Expansions	Time
h	2,019	0.06
h_{2D}	26,108	1.30
h_{Mech}	124,794	3.49

- 1. Combinatorics look bad
- 2. Bounded amount of time to make decision → Anytime planning
- 3. Environment changes because obstacles are discovered → Dynamic planning
- 4. What admissible heuristics (in the A* sense)?

Static obstacles

- 1. Combinatorics look bad
 - 2. Bounded amount of time to make decision → Anytime planning
 - 3. Environment changes because obstacles are discovered → Dynamic planning
 - 4. What admissible heuristics (in the A* sense)?