TBA

Examples from 1) Likhachev & Ferguson 2) C. Urmson et al., Tartan Team

Focus on two things:
Sampling for perception
Planning

4/23/2012

4/23/2012

* Multiple algorithms from LIDAR fused
— Spatially: Filter out spurious detections
— Temporally: Filter out moving objects

* Specialized detectors for curbs, road boundaries

Perception: Roads (application of
sampling)

— — w 2 3

T T
Yo y(z) = yo +tan(d)r + Cn? +Cy o

X =1y ¢ Co Crw]

Observation Z from sensor data

Find X: maxy p(X|2)

Problem: Cannot represent distribution explicitly
Solution: sampling

Peterson et al., IROS2009

4/23/2012

Input from sensing: Z

Obstacle map Curb detection (potential boundaries)

Roughness/ edge density

* Particle filters/sampling: Good way to handle
hard-to-model noisy perception

* Very fast (keeps up with driving speed)

SIR Sampling: Define likelihood for
which to sample

~ Obstacles

v‘\ Proposed X
—

- \
—‘—_—____——.5\\\:::¥§~____~____ Detected bondaries
(curbs, berns)

Minimize number of obstacles within X
Minimize roughness of X

Minimize distance between boundaries of X and
predicted boundaries

SIR Sampling: Define likelihood for
which to sample

(2D

V‘_\

\:ﬁ\

E,(X) = Number of obstacles cells within X
E,.(X) = Number of obstacles cells within X (roughness)

E,-(X) = Sum of distances between right boundary of
X and detected boundaries
E,; (X) = Sum of distances between right boundary of
X and detected boundaries

E(X) = [Eo(X) Ex(X) Epr(X) Ep(X)]

P(X|Z) = e~ @ E)

4/23/2012

4/23/2012

Reminder: Importance sampling

 Evaluating expectation from pnot normalized so
instead:

Ep(f) = f 1165 @ ax) ~ ——Z fx ofl’gxi)

Forf=1: Zlqgg

* Ep(f) % zif(xi)@lﬁ(xo/q(m)

q(xi)

“ ”
rtan £ x:
If x; are sampled from g Importance” of x;

A
- @
P .
7 is small, but we won't o Very small=> P Large >
find many samples in this not useful 4
region because gis small sample very useful
sample

4/23/2012

Compromise: SIR

* Fine to evaluate expectation but we may want to draw
actual samples

* Draw Nsamples x;, w; (with normalized w;)

* Draw again Nsamples from (xq,..,xy)

using distribution (wy,..,wy)

* Basically: Smart way of reject samples with low weight
* Guaranteed to converge to pwhen N-> oo

Accumulate more
samples in this region

Reject as
not useful

~. , w Very small=>
pis small, but we won’t not useful w Large =

find many samples in this
. Y p : sample very useful
region because gis small sample

4/23/2012

Perceptlon Dynamlc.

* Detection from multiple sensors

* Fusion of hypotheses

* Tracking filter using context knowledge
— Road
— Intersection
— Zone

4/23/2012

Architecture
i AP i L e et I il
Lane Driving T ' T Intersaction Handling T \
) I 1
VehicleDriver 1 | TransitionMmanager PanheadPlanner

ey N N

, DistanceKeeper MergePlanner | PrecedenceEstimator | |
\ I
Z Fy / T ; /21 ry I
[N L T Ny A N DR I
i | !
' !
| CurrentSceneReporter LaneSelector 4-:— GoalSelector !

1

[T StateEstimator I
'

1
! 1
! T Goal Selection '

Behavior selection from mission description in
3 contexts: Road, intersection, zone

Goal state generation from behaviors

Basic planning loop

Selected behavior

!

Goal/generation

l |

Path l Trajectory/motion
generation generation

Current map | T

1

Perception

4/23/2012

First case: Short-horizon planning
(e.g., road tracking)

Trajectory/motion generation

* Moving goal G

* Dynamically generate a family of feasible
trajectories {t,}

* Also “pure pursuit”, “receding horizon”

Howard & Kelly. Optimal trajectory generation. IJRR. 2007

sharp

smooth

* Two sets of trajectories
* Select lowest cost trajectory
* Distance from obstacles/lane boundaries

Second case: Long-horizon planning
e.g.: Maneuvers, zone planning, unstructured roads

* Use standard planning technique (A*, D*, etc.)

* Problem: Car has kinematic and dynamic constraints
— Curvature constraints (turning radius)
— Speed vs. curvature constraints (if speed high enough)

* Given state S only subset if control input U is allowed

4/23/2012

10

4/23/2012

Lattice representation

a
S S’
* Graph of states connected by feasible actions
* States:
— s = (x,y,0,v) v = translation velocity (forward/backward)
* Actions:

— For each s: generate the subset of states at distance d that are

reachable by a valid trajectory (solved using the previous
technigue for short-term goals)

— Reduction: Eliminate redundant actions

Pivtoraiko & Kelly. Generation near optimal spanning control sets....IROS 2005.

Lattice representation

* Planning in that graph, but: L
1. Combinatorics look bad
Bounded amount of time to make decision = Anytime planning

2.
3. Environment changes because obstacles are discovered = Dynamic planning
4. What admissible heuristics (in the A* sense)?

11

4/23/2012

1. Combinatorics

* Observation:

— Need detailed, high-resolution sampling of the actions
at the start and goal but not in between

* Implementation (multiresolution graph):

— Generate “high-resolution” action graph A4

— Subsample action set far from goal and start A; € A,
* Guarantees:

— Any path in a lower resolution action graph is a valid
path in the multiresolution graph)

— Any path in the multiresolution graph is a valid path in
a high-resolution action graph

12

4/23/2012

1. Combinatorics: Multi-resolution
T /

Ah Al

* Observation:

— Need detailed, high-resolution sampling of the actions at the start and goal but not in
between

* Implementation (multiresolution graph):
— Generate “high-resolution” action graph A,
— Subsample action set far from goal and start A, < A,
* Guarantees:
— Any path in a lower resolution action graph is a valid path in the multiresolution graph)
— Any path in the multiresolution graph is a valid path in a high-resolution action graph

1. Combinatorics: Multi-resolution

________Expansions [Time |

High res 2933 0.19
Low res 1228 0.06

13

4/23/2012

2. Anytime

£=25 & =15

13 expansions 15 expansions 20 expansions

solution=11 moves solution=11 moves

solution=10 moves

* Car keeps moving continuously and can’t stop and wait until
plan is complete

* Need answer within some bounded time which may not be
enough for full path
* Anytime version of A*:
— Assume heuristic h(.) is given
— Plan with eh(.) instead of = Fast but sub-optimal solution
— Decrease € =2 Increasingly better solution, converging to optimal

2. Anytime

650ms
cost =133,736
e=30
13,000 # expands = 1,715
11,000 | ; '
2 cost =77,345
8 e=1.0
expands = 14,132
9,000
7,000
0 0.2 04 0.6
time (secs)

14

2. Anytime

i 7 o 9 9 o o BRI i = =% 7 (3 T
i &
| 1
1

|

I i e e s — e — | — i —

Pre-planned path Refined, optimal path

e=3.0 e=1.0
3. Dynamic

* New obstacles are detected continuously as car
moves
* Dynamic obstacles change continuously

 Solution: Add dynamic repairing component to
the anytime version (e.g., D¥*)

4/23/2012

15

4/23/2012

3. Dynamic

* New obstacles are detected continuously as car moves
* Dynamic obstacles change continuously

* Solution: Add dynamic repairing component to the anytime version
(e.g., D¥)

* set ¢to large value

 until goal is reached
— ComputePathReuse() (weighted & A*)

— Follow the path until world is updated with new
information

— Update the corresponding edge costs
— Set s, to the current state of the agent
— If “significant” changes were observed
* increase ¢ or replan from scratch
— else
* decrease ¢

3. Dynamic: Discovering obstacles

200m x 200m

16

4/23/2012

3. Dynamic: Complex maneuvers

4. Heuristics
Goal

* Everything depends on admissible h(.)

* h(.) needs to be admissible and consistent
h(s) + c(s,s") = h(s")

* Two types of factors can be used to evaluate the

cost of the path:
— Mechanism constraints (action graph)
— Environment constraints (obstacles)

17

4.a Mechanism Heuristics

<o

Compute the path from start to goal using:
— Full action-state graph
— With no obstacles

Expensive but:

— Can be pre-computed once offline!

Fully integrates the physical constraints of the problem
But can grossly underestimate the path cost

4.b Environment Heuristics
A

-

L]

Ignore the mechanism constraints
Compute path in 2-D (x,y) grid
Has be to done online, but very fast

Accounts for obstacles but may still grossly
underestimate by using mechanically infeasible paths

4/23/2012

18

4. Heuristics

Environment hop(L) | <] e

Mechanism hpecn (L)

]

Environment hyp (L)

Combination:

h(.) = max(h,p(.), hMech()) -
Max of admissible
heuristics is admissible

[}

4. Heuristics

_M

2,019 0.06
hw 26,108 1.30
Myjecn 124,794 3.49

- Mechanism hpsech

4/23/2012

19

* Planningin that graph, but: @
1.
2.

3.

4/23/2012

(]
~

Combinatorics look bad

Bounded amount of time to make decision = Anytime
planning

Environment changes because obstacles are discovered -
Dynamic planning
What admissible heuristics (in the A* sense)?

Static obstacles

20

* Planning in that graph, but:
1.
2.

3.

4/23/2012

Dynamic obstacles

Combinatorics look bad

Bounded amount of time to make decision = Anytime
planning

Environment changes because obstacles are discovered -
Dynamic planning
What admissible heuristics (in the A* sense)?

21

