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HISTORY OF COMPUTER CHESS

e Shannon and Turing wrote about chess in
1950s

o Suggested min-max and pruning
* 1956: First chess program (on 6x6 board)

e 1968: David Levy bets that no computer
program will beat him before 1978

e 1997: Deep blue beats Kasparov

e Brute force search defeats human intuition
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ZERO SUM GAMES

A position is a vertex in the game tree

Each vertex associated with a player

Root of tree is initial position

Children of vertex are positions that are
reachable in one move

Each leaf specifies payment to “max
player”
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EXAMPLE. GAME TREE
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ZERMELO’S THEOREM

Theorem: there exist two strategies s,
and s, and a value v" such that:
o If max player plays s, he gets at least v'

o If min player plays s, he gets at most v’
b S

v = value of the game

For checkers v =0 [Schaeffer et al., IJCAT'05]
Solve by backward induction
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EXAMPLE: MINF-MAX STRATEGIES
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EXAMPLE: MINFMAX STRATEGIES
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EXAMPLE: MINFMAX STRATEGIES
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EXAMPLE: MINFMAX STRATEGIES
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o~ PRUNING

 Compute optimal strategy without looking
at every node (on average)

e There is no point exploring paths that will
never be taken in min-max strategies

e F'rom now on assume that the game tree is
binary (nodes have at most two children)
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EXAMPLE:. PRUNING TREES
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o~3 PRUNING PSEUDOCODE
MaxEval (T,OL,B)
If T is a leaf then return u(T)
v = max(a,MinEval(left(T),o,[)
If v 2 3 then return v
v = max(v,MinEval(right(T),v,)

return v
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EXAMPLE: o-3 PRUNING
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EXAMPLE: o-3 PRUNING
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EXAMPLE: o-3 PRUNING
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EXAMPLE: o-3 PRUNING
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THEORETICAL ANALYSIS

* We prove the following statements on the
board + in the addendum

e In the worst case a-3 pruning has to query
all the leaves

e For “alternating” binary trees, randomized
a-B pruning has to evaluate o(n) leaves

* Every randomized alg must evaluate Q(n)
leaves 1n the worst case
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HEURISTICS MATTER

» Effectiveness is highly dependent on the
order in which states are examined

 For chess, fairly simple ordering functions
(captures, then threats, then forward
moves, then backward moves) work well

 The best moves are called “killer moves”;
try them first!
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Proofs for Lecture 8

Ariel Procaccia

Assumption 1. Game trees are binary and the values of all leaves are in {0, 1}.

Theorem 2. Given a game tree with n leaves and an algorithm that evaluates the game, there
exists an input such that a-8 pruning must query all the leaves.

Proof sketch. We prove the claim by induction on the number of leaves n, using an adversary
argument. The base case (n = 1) is trivial.

Given a tree with n leaves, assume that the claim holds for all trees with n — 1 leaves. We
can eliminate all nodes v with only one child by replacing v with its child; note that this does not
change the number of leaves. Hence we can assume without loss of generality that each node has
exactly two children (i.e., the binary tree is full).

Now, the algorithm queries some leaf first. If the leaf’s parent is a max node, the adversary
answers that the value is 0; and if the leaf’s parent is a min node, the adversary responds with 1.
Based on these answers, it is not possible to decide the value of the leaf’s parent without querying
the leaf’s sibling. In fact, the parent’s value depends only on the leaf’s sibling, so we can replace
the parent with the sibling, thus obtaining a tree with n — 1 unqueried leaves. By the induction
assumption, all the leaves of this new tree must be queried. O

Consider a randomized version of -3 pruning that switches the order of children with proba-
bility 1/2.

Lemma 3. Consider a game tree whose root is a max node, with two children that are min nodes,
each of which has two children that are leaves. The expected number of leaves randomized a-f3
pruning needs to query given this tree is at most 3.

Proof. We consider two cases.

Case 1: the value of the tree is 1. It follows that the value of at least one of the min nodes is 1;
without loss of generality the value of the left min node is 1. With probability at least 1/2 the
algorithm first computes the value of the left min node. If this happens, the value of the second
min node would not be calculated. Therefore, the expected running time is at most

1 1
.24 2.4=3
2 "3

Case 2: the value of the tree is 0. In this setting, the value of both min nodes is 0. For each one,
with probability 1/2 the algorithm would first query the value of a leaf with utility 0, and its sibling
would not be queried. The expected running time is at most

1 1
2(Z-1+--2)=3.
(31+572) =



Next, consider a special game tree that we refer to as an alternating game tree; it is a binary
tree of height 2h, where each internal node has exactly two children, the nodes at even depth are
max nodes, and the nodes at odd depth are min nodes.

Theorem 4. The expected number of leaves randomized «a-f pruning needs to query given an
3

alternating game tree with n leaves is at most nl°%43,
Proof. Using Lemma 3 we see that the algorithm needs to evaluate at most three of its subtrees
at height 2(h — 1) in expectation. That is, we have that T'(h) < 3T (h — 1). In addition, note that
T(0) = 1 (because a tree of height 0 is a leaf). Therefore, T(h) < 3". Since we are dealing with a
full binary tree of height 2k, we have that n = 22" = 4", Tt follows that

T(h) < 3h _ 4(10g43)h _ (4h)1og43 _ n10g43‘
]

Lemma 5 (Yao’s minmax principle [1]). A lower bound on the performance of the best randomized
algorithm on the worst deterministic input is given by the performance of the best deterministic
algorithm on some probabilistic input.

Theorem 6. For any randomized algorithm there exists a game tree with n leaves such that the
algorithm needs to query at least n/2 leaves in expectation.

Proof sketch. We consider trees of height 2h where the nodes at depth 0,..., h are max nodes, and
the nodes at depth h + 1,...,2h are min nodes. That is, player 1 makes h consecutive moves and
then player 2 makes h consecutive moves. In other words, for each of the 2" possible strategies of
player 1, player 2 has 2" possible responses. We can represent the game as a matrix M with 2"
rows and 2" columns; when player 1 plays strategy i, and player 2 responds with strategy j, the
utility (to player 1) is M;;. The value of the tree is 1 if and only if there is a row that only contains
ones.

Consider the uniform distribution over matrices that have exactly one zero in each row. In
order to give a correct answer, a deterministic algorithm has to find all the zeros in the matrix. To
find a zero in a given row, the algorithm has to query half the cells in expectation. The information
about one row does not help pinpoint the zero in a different row, and therefore the algorithm must
query half the cells in the matrix. The theorem now follows from Lemma, 5. ]
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