Graduate AI
Lecture 20: Social Choice I

Teachers:
Martial Hebert
Ariel Procaccia (this time)
Social choice theory

• A mathematical theory that deals with aggregation of individual preferences
• Origins in ancient Greece
• Formal foundations: 18th Century (Condorcet and Borda)
• 19th Century: Charles Dodgson
• 20th Century: Nobel prizes to Kenneth Arrow and Amartya Sen
Computational social choice

• Two-way interaction with AI
• $\text{AI} \Rightarrow \text{social choice}$
 o Algorithms and computational complexity
 o Machine learning in social choice
 o Knowledge representation
 o Markov decision processes
Computational social choice

• Social choice ⇒ AI
 o Multiagent systems: reducing communication
 o Human computation: aggregating peoples’ opinions
The voting model

• Set of voters $N = \{1, \ldots, n\}$
• Set of alternatives $A, |A| = m$
• Each voter has a ranking over the candidates
• $x >_i y$ means that voter i prefers x to y
• Preference profile = collection of all voters’ rankings

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Voting rules

• *Voting rule* = function from preference profiles to alternatives that specifies the winner of the election

• Plurality

 o Each voter awards one point to top alternative

 o Alternative with most points wins

 o Used in almost all political elections
More voting rules

• Borda count
 o Each voter awards $m-k$ points to alternative ranked k’th
 o Alternative with most points wins
 o Proposed in the 18th Century by the chevalier de Borda
 o Used in the national assembly of Slovenia
 o Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners
More voting rules

- **Veto**
 - Each voter vetoes his least preferred alternative
 - Alternative with least vetoes wins

- **Positional scoring rules**
 - Defined by a vector \((s_1, \ldots, s_m)\)
 - Each voter gives \(s_k\) points to \(k\)’th position
 - Plurality: \((1,0,\ldots,0)\); Borda: \((m-1,m-2,\ldots,0)\), Veto: \((1,\ldots,1,0)\)
More voting rules

• a beats b in a *pairwise election* if the majority of voters prefer a to b

• Plurality with runoff
 o First round: two alternatives with highest plurality scores survive
 o Second round: pairwise election between these two alternatives
More voting rules

• Single Transferable vote (STV)
 o m-1 rounds
 o In each round, alternative with least plurality votes is eliminated
 o Alternative left standing is the winner
 o Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)
STV: example

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 voters</th>
<th>2 voters</th>
<th>1 voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>
Marquis de Condorcet

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison
Condorcet winner

- Condorcet winner = alternative that beats every other alternative in pairwise election
- Condorcet paradox = Condorcet winner may not exist
- Condorcet criterion = elect a Condorcet winner if one exists
- Does plurality satisfy criterion? Borda?
More voting rules

• Copeland
 o Alternative’s score is \#alternatives it beats in pairwise elections
 o Why does Copeland satisfy the Condorcet criterion?

• Maximin
 o Score of x is \(\min_y |\{i \in N : x >_i y\}| \)
 o Why does Maximin satisfy the Condorcet criterion?
Awesome example

• Plurality: a
• Borda: b
• Condorcet winner: c
• STV: d
• Plurality with runoff: e

<table>
<thead>
<tr>
<th></th>
<th>33 voters</th>
<th>16 voters</th>
<th>3 voters</th>
<th>8 voters</th>
<th>18 voters</th>
<th>22 voters</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>e</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>d</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Manipulation

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!
Strategyproofness

- A voting rule is *strategyproof (SP)* if a voter can never benefit from lying about his preferences:
 \[\forall <, \forall i \in \mathbb{N}, \forall <'_i, f(<) \geq_i f(<'_i, <_{-i}) \]

- If there are two candidates then plurality is SP
Gibbard-Satterthwaite

- A voting rule is *dictatorial* if there is a voter who always gets his most preferred alternative
- A voting rule is *onto* if any alternative can win
- **Theorem (Gibbard-Satterthwaite):** If \(m \geq 3 \) then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable
Proof of G-S Theorem

• We prove the following statement on the board

• If \(m \geq 3 \) and \(n = 2 \) then any voting rule that is SP and onto is dictatorial

• The proof also appears in: L.-G. Svensson. The proof of the Gibbard-Satterthwaite Theorem revisited, Theorem 1 (available from course website)
Lemmas

• A voting rule satisfies **monotonicity** if:
 \[f(<) = a, \forall i \in N, x \in A, [x \leq a \Rightarrow x \leq' a] \]
 implies that \(f(<') = a \)

• **Lemma:** Any SP voting rule is monotonic

• A voting rule satisfies **Pareto optimality (PO)** if:
 \(\forall i \in N, x >_i y \Rightarrow f(<) \neq y \)

• **Lemma:** Any SP and onto voting rule is PO