Graduate Artificial Intelligence 15-780

Homework 3: Motion Planning & CSPs

Out on March 5
Due on March 19

Homework 3 Graduate Artificial Intelligence 15-780

Problem 1: Polygonal Planning [John, 10 Pts’]

Assume you are in control of a robot with full knowledge of the obstacles in its world. Furthermore, any obstacles
are closed polygonal regions. In class, we proved that the shortest path from a starting position to a goal position
is a polygonal line with vertices (if they exist) corresponding to vertices on the obstacles.

We now introduce a new distinction: a vertex x whose internal angle formed by its two edges is less than 180
degrees is called convex, while a vertex y whose internal angle formed by its two edges is at least 180 degrees is
called concave. These are the normal definitions of convex and concave (see Figure 1 for an example).

Goal
@

)
Start

Figure 1: A polygonal world with start and goal state. The vertex x is convex, while the vertex y is concave.

Using techniques similar to those from class, prove that the shortest path from the start to goal positions is a
polygonal line with vertices (if they exist) corresponding to only convex vertices on the obstacles.

Problem 2: A Robot in Manhattan [John, 20 Pts']

A robot moves from vertices to vertices in the unbounded regular 2-D grid shown in Figure 2. The initial position
of the robot is the vertex (0,0), marked with WALL-E. At each step the robot can move from its current position by
a unit increment up, down, left, or right. The goal is for the robot to move to some given grid vertex (x, y).

a) How many distinct positions can the robot reach in k > 0 steps that it could not reach in fewer than k steps?
Please explain your answer. [2 pts]

4% (i) 4k (i) 4k?

1With thanks to Jean-Claude Latombe!

Page 1 of4

Homework 3 Graduate Artificial Intelligence 15-780

+1

Figure 2: A portion of the grid, with a friendly robot at position (0, 0).

b) In the last homework, we discussed admissible heuristics. Recall our (more strict) definition of a consistent
heuristic from lecture. Let the robot be at position (x, y). For a node n = (u,v), is h(n) = lu—x|+|v—yla
consistent heuristic? Why? [6 pts]

c) If we remove some edges from the grid, does this heuristic & remain consistent? Why? [6 pts]

d) If we add new edges into the grid, does / remain consistent? Why? [6 pts]

Problem 3: New and Improved A* Search [John, 35 Pts]

For the last homework assignment, you coded up a version of the class A* algorithm for use on static 2-D grids.
Since then, we've discussed some variants of the A* algorithm, like weighted A* search and ARA*. A brief refresher
for these two variants is below; for more information, see the slides from lecture.

Weighted A*

When faced with a difficult search problem, A* often takes too long to find an optimal solution (as many of you
know!). In cases such as these, approximate solutions are often more helpful than no solution at all. Weighted A*
defines, for a node n, a function f'(n) = g(n) + w x h(n) for some exogenous weight w € R=!. This node evaluation
function f” is essentially f from normal A*, just with a little more emphasis put on the heuristic.

Anytime Repairing A* (ARA*)

Weighted A* provides a (bounded) suboptimal solution. Anytime Repairing A* (or ARA*) aims to fix this by quickly
finding a suboptimal path under a loose optimality bound, and then progressively refining the path by tightening
the bound. In lecture, we discussed ARA*’s small additions to the classical A*’'s ComputePath function, as well as
the ARA* main loop for refining search. For more information, you will need to read and understand:

e Likhachev, Ferguson, Gordon, Stentz, and Thrun. Anytime Search in Dynamic Graphs. Artificial Intelligence,
2008, pp. 1613-1643.

A link to this paper can be found on the course website.

Page 2 of 4

Homework 3 Graduate Artificial Intelligence 15-780

Problems

a) Implement weighted A* using your codebase from the last homework assignment. This should be a trivial
extension to your code. Pick a map (not the empty map, though) and run an extensive simulation comparing
the number of nodes visited, expanded, and the final path lengths returned by weighted A* run on w €
{1.0,1.5,2.5,5.0,10.0}. Report this comparison in an easy-to-read table or figure. [10 pts]

b) Implement ARA*. The ComputePath function for ARA* is very similar to that used by your current A*. Using
the map you chose above (again, notthe empty map), run a similar experiment, recording the nodes visited,
expanded, and the final path lengths at each iteration of the weight w, with the initial w = 10, in ARA*. How
do the two algorithms compare qualitatively and quantitatively? [25 pts]

Problem 4: A Scheduling Nightmare [John, 35 Pts]

As an overworked student, you must complete all of your homework assignments in each of your classes before
they are due at the end of the semester (at time ¢ = T). Each homework assignment has a specific duration d € N
representing how long it will take to complete. You must also complete them in order (so the first homework
assignment in a class must be completed before the second in that same class); however, homework assignments
in one class can be completed in any order relative to assignments in another class.

Since you are a student in computer science, many of your homework assignments require the use of specific
machines for experimentation. You have a set of k computers; some homework assignments require one or more
specific computers, and occupy them entirely for the entire duration of the homework assignment (i.e., if both
homework A and homework B require computer 1, then you cannot work on A and B at the same time).

An Example Semester

Figure 3 gives an example semester-long homework schedule for a student. The student has four classes, and each
class has either three or four homework assignments. These homework assignments have (i) a duration in time
periods, (ii) a relative ordering to other homework assignments in the same class, and (iii) an optional resource
requirement. We assume the semester is 15 time periods long.

For example, the homework Hy ; has duration 4 and requires resource 0. Similarly, homework Hj o has duration
1 and also requires resource 0. As discussed above, the shared resource constraint would prevent the student from
overlapping these two homeworks in her schedule.

Problems
Please use the example from Figure 3 in these problems.

a) What are the variables and their domains? [2 pts]

b) Describe how you would write this problem as a CSP with arity r > 2, e.g., with at least some constraints
having at most r variables. [4 pts]

¢) Qualitatively, how would this change if you were limited to arity r = 2? Recall from class that any CSP can be
written this way. [4 pts]

d) Solve your scheduling CSP—either the r > 2 or r = 2 version—by hand or with code using (i) a deterministic
ordering of variables and values (e.g., alphabetical order) and (ii) the most constrained variable and least
constraining value heuristics discussed in class. How much of an effect did these heuristics have on the size
of the search tree? Quantify your answer. [15 pts]

Page 3 of 4

Homework 3 Graduate Artificial Intelligence 15-780

e) The problem above is solved relatively easily with simple heuristics and backtracking search. This is not
always the case. Come up with a short “worst-case” instantiation of the general scheduling problem. What
are some properties of these search problems that will thwart the most constrained variable heuristic? The
least constraining value heuristic? [10 pts]

Class 0:

Class 1:

Class 2:

-

N _
—~

15 Time Periods: T={0,...,14}

Figure 3: A semester’s worth of homeworks for four classes. Each homework has a relative ordering (e.g., Hp o must
be completed before Hy;), an integral duration, and (possibly) a resource constraint. The semester is assumed to
be 15 time periods in length.

Page 4 of 4

